skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to Better Distinguish Security Bug Reports (Using Dual Hyperparameter Optimization)
In order that the general public is not vulnerable to hackers, security bug reports need to be handled by small groups of engineers before being widely discussed. But learning how to distinguish the security bug reports from other bug reports is challenging since they may occur rarely. Data mining methods that can find such scarce targets require extensive optimization effort. The goal of this research is to aid practitioners as they struggle to optimize methods that try to distinguish between rare security bug reports and other bug reports. Our proposed method, called SWIFT, is a dual optimizer that optimizes both learner and pre-processor options. Since this is a large space of options, SWIFT uses a technique called 𝜖-dominance that learns how to avoid operations that do not significantly improve performance. When compared to recent state-of-the-art results (from FARSEC which is published in TSE’18), we find that the SWIFT’s dual optimization of both pre-processor and learner is more useful than optimizing each of them individually. For example, in a study of security bug reports from the Chromium dataset, the median recalls of FARSEC and SWIFT were 15.7% and 77.4%, respectively. For another example, in experiments with data from the Ambari project, the median recalls improved from 21.5% to 85.7% (FARSEC to SWIFT). Overall, our approach can quickly optimize models that achieve better recalls than the prior state-of-the-art. These increases in recall are associated with moderate increases in false positive rates (from 8% to 24%, median). For future work, these results suggest that dual optimization is both practical and useful.  more » « less
Award ID(s):
1909516
PAR ID:
10297623
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Empirical Software Engineering
Volume:
26
Issue:
3
ISSN:
1382-3256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Machine learning techniques have been widely used and demonstrate promising performance in many software security tasks such as software vulnerability prediction. However, the class ratio within software vulnerability datasets is often highly imbalanced (since the percentage of observed vulnerability is usually very low). Goal: To help security practitioners address software security data class imbalanced issues and further help build better prediction models with resampled datasets. Method: We introduce an approach called Dazzle which is an optimized version of conditional Wasserstein Generative Adversarial Networks with gradient penalty (cWGAN-GP). Dazzle explores the architecture hyperparameters of cWGAN-GP with a novel optimizer called Bayesian Optimization. We use Dazzle to generate minority class samples to resample the original imbalanced training dataset. Results: We evaluate Dazzle with three software security datasets, i.e., Moodle vulnerable files, Ambari bug reports, and JavaScript function code. We show that Dazzle is practical to use and demonstrates promising improvement over existing state-of-the-art oversampling techniques such as SMOTE (e.g., with an average of about 60% improvement rate over SMOTE in recall among all datasets). Conclusion: Based on this study, we would suggest the use of optimized GANs as an alternative method for security vulnerability data class imbalanced issues. 
    more » « less
  2. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes). However, the process of crash reproduction is often manually done by developers, making the resolution of bugs inefficient, especially given that bug reports are often written in natural language. To improve the productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses a combination of natural language processing (NLP) , deep learning, and dynamic GUI exploration to synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+ on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports. A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of developers when resolving crash bug reports. 
    more » « less
  3. The optimization of a system’s configuration options is crucial for determining its performance and functionality, particularly in the case of autonomous driving software (ADS) systems because they possess a multitude of such options. Research efforts in the domain of ADS have prioritized the development of automated testing methods to enhance the safety and security of self-driving cars. Presently, search-based approaches are utilized to test ADS systems in a virtual environment, thereby simulating real-world scenarios. However, such approaches rely on optimizing the waypoints of ego cars and obstacles to generate diverse scenarios that trigger violations, and no prior techniques focus on optimizing the ADS from the perspective of configuration. To address this challenge, we present a framework called ConfVE, which is the first automated configuration testing framework for ADSes. ConfVE’s design focuses on the emergence of violations through rerunning scenarios generated by different ADS testing approaches under different configurations, leveraging 9 test oracles to enable previous ADS testing approaches to find more types of violations without modifying their designs or implementations and employing a novel technique to identify bug-revealing violations and eliminate duplicate violations. Our evaluation results demonstrate that ConfVE can discover 1,818 unique violations and reduce 74.19% of duplicate violations. 
    more » « less
  4. Bug report reproduction is an important, but time-consuming task carried out during mobile app maintenance. To accelerate this task, current research has proposed automated reproduction techniques that rely on a guided dynamic exploration of the app to match bug report steps with UI events in a mobile app. However, these techniques struggle to find the correct match when the bug reports have missing or inaccurately described steps. To address these limitations, we propose a new bug report reproduction technique that uses an app’s UI model to perform a global search across all possible matches between steps and UI actions and identify the most likely match while accounting for the possibility of missing or inaccurate steps. To do this, our approach redefines the bug report reproduction process as a Markov model and finds the best paths through the model using a dynamic programming based technique. We conducted an empirical evaluation on 72 real-world bug reports. Our approach achieved a 94% reproduction rate on the total bug reports and a 93% reproduction rate on bug reports with missing steps, significantly outperforming the state-of-the-art approaches. Our approach was also more effective in finding the matches from the steps to UI events than the state-of-the-art approaches. 
    more » « less
  5. null (Ed.)
    Context: Security smells are recurring coding patterns that are indicative of security weakness and require further inspection. As infrastructure as code (IaC) scripts, such as Ansible and Chef scripts, are used to provision cloud-based servers and systems at scale, security smells in IaC scripts could be used to enable malicious users to exploit vulnerabilities in the provisioned systems. Goal: The goal of this article is to help practitioners avoid insecure coding practices while developing infrastructure as code scripts through an empirical study of security smells in Ansible and Chef scripts. Methodology: We conduct a replication study where we apply qualitative analysis with 1,956 IaC scripts to identify security smells for IaC scripts written in two languages: Ansible and Chef. We construct a static analysis tool called Security Linter for Ansible and Chef scripts (SLAC) to automatically identify security smells in 50,323 scripts collected from 813 open source software repositories. We also submit bug reports for 1,000 randomly selected smell occurrences. Results: We identify two security smells not reported in prior work: missing default in case statement and no integrity check. By applying SLAC we identify 46,600 occurrences of security smells that include 7,849 hard-coded passwords. We observe agreement for 65 of the responded 94 bug reports, which suggests the relevance of security smells for Ansible and Chef scripts amongst practitioners. Conclusion: We observe security smells to be prevalent in Ansible and Chef scripts, similarly to that of the Puppet scripts. We recommend practitioners to rigorously inspect the presence of the identified security smells in Ansible and Chef scripts using (i) code review, and (ii) static analysis tools. 
    more » « less