skip to main content

Title: Probabilistic Connection Importance Inference and Lossless Compression of Deep Neural Networks
Deep neural networks (DNNs) can be huge in size, requiring a considerable a mount of energy and computational resources to operate, which limits their applications in numerous scenarios. It is thus of interest to compress DNNs while maintaining their performance levels. We here propose a probabilistic importance inference approach for pruning DNNs. Specifically, we test the significance of the relevance of a connection in a DNN to the DNN’s outputs using a nonparemtric scoring testand keep only those significant ones. Experimental results show that the proposed approach achieves better lossless compression rates than existing techniques  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference on Learning Representations
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Neural Networks (DNNs) have become a popular instrument for solving various real-world problems. DNNs’ sophisticated structure allows them to learn complex representations and features. For this reason, Binary Neural Networks (BNNs) are widely used on edge devices, such as microcomputers. However, architecture specifics and floating-point number usage result in an increased computational operations complexity. Like other DNNs, BNNs are vulnerable to adversarial attacks; even a small perturbation to the input set may lead to an errant output. Unfortunately, only a few approaches have been proposed for verifying BNNs.This paper proposes an approach to verify BNNs on continuous input space using star reachability analysis. Our approach can compute both exact and overapproximate reachable sets of BNNs with Sign activation functions and use them for verification. The proposed approach is also efficient in constructing a complete set of counterexamples in case a network is unsafe. We implemented our approach in NNV, a neural network verification tool for DNNs and learning-enabled Cyber-Physical Systems. The experimental results show that our star-based approach is less conservative, more efficient, and scalable than the recent SMT-based method implemented in Marabou. We also provide a comparison with a quantization-based tool EEVBNN. 
    more » « less
  2. Deep neural networks (DNNs) are becoming increasingly important components of software, and are considered the state-of-the-art solution for a number of problems, such as image recognition. However, DNNs are far from infallible, and incorrect behavior of DNNs can have disastrous real-world consequences. This paper addresses the problem of architecture-preserving V-polytope provable repair of DNNs. A V-polytope defines a convex bounded polytope using its vertex representation. V-polytope provable repair guarantees that the repaired DNN satisfies the given specification on the infinite set of points in the given V-polytope. An architecture-preserving repair only modifies the parameters of the DNN, without modifying its architecture. The repair has the flexibility to modify multiple layers of the DNN, and runs in polynomial time. It supports DNNs with activation functions that have some linear pieces, as well as fully-connected, convolutional, pooling and residual layers. To the best our knowledge, this is the first provable repair approach that has all of these features. We implement our approach in a tool called APRNN. Using MNIST, ImageNet, and ACAS Xu DNNs, we show that it has better efficiency, scalability, and generalization compared to PRDNN and REASSURE, prior provable repair methods that are not architecture preserving. 
    more » « less
  3. Deep Neural Networks (DNNs) need to be both efficient and robust for practical uses. Quantization and structure simplification are promising ways to adapt DNNs to mobile devices, and adversarial training is one of the most successful methods to train robust DNNs. In this work, we aim to realize both advantages by applying a convergent relaxation quantization algorithm, i.e., Binary-Relax (BR), to an adversarially trained robust model, i.e. the ResNets Ensemble via Feynman-Kac Formalism (EnResNet). We discover that high-precision quantization, such as ternary (tnn) or 4-bit, produces sparse DNNs. However, this sparsity is unstructured under adversarial training. To solve the problems that adversarial training jeopardizes DNNs’ accuracy on clean images and break the structure of sparsity, we design a trade-off loss function that helps DNNs preserve natural accuracy and improve channel sparsity. With our newly designed trade-off loss function, we achieve both goals with no reduction of resistance under weak attacks and very minor reduction of resistance under strong adversarial attacks. Together with our model and algorithm selections and loss function design, we provide an integrated approach to produce robust DNNs with high efficiency and accuracy. Furthermore, we provide a missing benchmark on robustness of quantized models. 
    more » « less
  4. Deep neural networks (DNNs) have started to find their role in the modern healthcare system. DNNs are being developed for diagnosis, prognosis, treatment planning, and outcome prediction for various diseases. With the increasing number of applications of DNNs in modern healthcare, their trustworthiness and reliability are becoming increasingly important. An essential aspect of trustworthiness is detecting the performance degradation and failure of deployed DNNs in medical settings. The softmax output values produced by DNNs are not a calibrated measure of model confidence. Softmax probability numbers are generally higher than the actual model confidence. The model confidence-accuracy gap further increases for wrong predictions and noisy inputs. We employ recently proposed Bayesian deep neural networks (BDNNs) to learn uncertainty in the model parameters. These models simultaneously output the predictions and a measure of confidence in the predictions. By testing these models under various noisy conditions, we show that the (learned) predictive confidence is well calibrated. We use these reliable confidence values for monitoring performance degradation and failure detection in DNNs. We propose two different failure detection methods. In the first method, we define a fixed threshold value based on the behavior of the predictive confidence with changing signal-to-noise ratio (SNR) of the test dataset. The second method learns the threshold value with a neural network. The proposed failure detection mechanisms seamlessly abstain from making decisions when the confidence of the BDNN is below the defined threshold and hold the decision for manual review. Resultantly, the accuracy of the models improves on the unseen test samples. We tested our proposed approach on three medical imaging datasets: PathMNIST, DermaMNIST, and OrganAMNIST, under different levels and types of noise. An increase in the noise of the test images increases the number of abstained samples. BDNNs are inherently robust and show more than 10% accuracy improvement with the proposed failure detection methods. The increased number of abstained samples or an abrupt increase in the predictive variance indicates model performance degradation or possible failure. Our work has the potential to improve the trustworthiness of DNNs and enhance user confidence in the model predictions. 
    more » « less
  5. Deep neural networks (DNNs) are being applied to various areas such as computer vision, autonomous vehicles, and healthcare, etc. However, DNNs are notorious for their high computational complexity and cannot be executed efficiently on resource constrained Internet of Things (IoT) devices. Various solutions have been proposed to handle the high computational complexity of DNNs. Offloading computing tasks of DNNs from IoT devices to cloud/edge servers is one of the most popular and promising solutions. While such remote DNN services provided by servers largely reduce computing tasks on IoT devices, it is challenging for IoT devices to inspect whether the quality of the service meets their service level objectives (SLO) or not. In this paper, we address this problem and propose a novel approach named QIS (quality inspection sampling) that can efficiently inspect the quality of the remote DNN services for IoT devices. To realize QIS, we design a new ID-generation method to generate data (IDs) that can identify the serving DNN models on edge servers. QIS inserts the IDs into the input data stream and implements sampling inspection on SLO violations. The experiment results show that the QIS approach can reliably inspect, with a nearly 100% success rate, the service qualtiy of remote DNN services when the SLA level is 99.9% or lower at the cost of only up to 0.5% overhead. 
    more » « less