skip to main content


Title: Multifidelity modeling similarity conditions for airfoil dynamic stall prediction with manifold mapping
Purpose The purpose of this work is to investigate the similarity requirements for the application of multifidelity modeling (MFM) for the prediction of airfoil dynamic stall using computational fluid dynamics (CFD) simulations. Design/methodology/approach Dynamic stall is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter's shear stress transport turbulence model. Multifidelity models are created by varying the spatial and temporal discretizations. The effectiveness of the MFM method depends on the similarity between the high- (HF) and low-fidelity (LF) models. Their similarity is tested by computing the prediction error with respect to the HF model evaluations. The proposed approach is demonstrated on three airfoil shapes under deep dynamic stall at a Mach number 0.1 and Reynolds number 135,000. Findings The results show that varying the trust-region (TR) radius (λ) significantly affects the prediction accuracy of the MFM. The HF and LF simulation models hold similarity within small (λ ≤ 0.12) to medium (0.12 ≤ λ ≤ 0.23) TR radii producing a prediction error less than 5%, whereas for large TR radii (0.23 ≤ λ ≤ 0.41), the similarity is strongly affected by the time discretization and minimally by the spatial discretization. Originality/value The findings of this work present new knowledge for the construction of accurate MFMs for dynamic stall performance prediction using LF model spatial- and temporal discretization setup and the TR radius size. The approach used in this work is general and can be used for other unsteady applications involving CFD-based MFM and optimization.  more » « less
Award ID(s):
1739551
NSF-PAR ID:
10297675
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Engineering Computations
Volume:
ahead-of-print
Issue:
ahead-of-print
ISSN:
0264-4401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The dynamic stall phenomenon produces adverse aerodynamic loading, which negatively affects the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides a practical approach for delaying and mitigating dynamic stall characteristics without the addition of an auxiliary system. A typical ASO investigation requires multiple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations. In the case of dynamic stall, unsteady CFD simulations are required for airfoil shape evaluation; combining it with high-dimensions of airfoil shape parameterization renders the ASO investigation computationally costly. In this study, metamodel-based optimization (MBO) is proposed using the multifidelity modeling (MFM) technique to efficiently conduct ASO investigation for computationally expensive dynamic stall cases. MFM methods combine data from accurate high-fidelity (HF) simulations and fast low-fidelity (LF) simulations to provide accurate and fast predictions. In particular, Cokriging regression is used for approximating the objective and constraint functions. The airfoil shape is parameterized using six PARSEC parameters. The objective and constraint functions are evaluated for a sinusoidally oscillating airfoil with the unsteady Reynolds-averaged Navier-Stokes equations at a Reynolds number of 135,000, Mach number of 0.1, and reduced frequency of 0.05. The initial metamodel is generated using 220 LF and 20 HF samples. The metamodel is then sequentially refined using the expected improvement infill criteria and validated with the normalized root mean square error. The refined metamodel is utilized for finding the optimal design. The optimal airfoil shape shows higher thickness, larger leading-edge radius, and an aft camber compared to baseline (NACA 0012). The optimal shape delays the dynamic stall occurrence by 3 degrees and reduces the peak aerodynamic coefficients. The performance of the MFM method is also compared with the single-fidelity metamodeling method using HF samples. Both the approaches produced similar optimal shapes; however, the optimal shape from MFM achieved a minimum objective function value while more closely satisfying the constraint at a computational cost saving of around 41%. 
    more » « less
  2. Effect of airfoil thickness on onset of dynamic stall is investigated using large eddy simulations at chord-based Reynolds number of 200 000. Four symmetric NACA airfoils of thickness-to-chord ratios of 9 %, 12 %, 15 % and 18 % are studied. The three-dimensional Navier–Stokes solver, FDL3DI is used with a sixth-order compact finite difference scheme for spatial discretization, second-order implicit time integration and discriminating filters to remove unresolved wavenumbers. A constant-rate pitch-up manoeuver is studied with the pitching axis located at the airfoil quarter chord. Simulations are performed in two steps. In the first step, the airfoil is kept static at a prescribed angle of attack ( $=4^{\circ }$ ). In the second step, a ramp function is used to smoothly increase the pitch rate from zero to the selected value and then the pitch rate is held constant until the angle of attack goes past the lift-stall point. The solver is verified against experiments for flow over a static NACA 0012 airfoil. Static simulation results of all airfoil geometries are also compared against XFOIL predictions with a generally favourable agreement. FDL3DI predicts two-stage transition for thin airfoils (9 % and 12 %), which is not observed in the XFOIL results. The dynamic simulations show that the onset of dynamic stall is marked by the bursting of the laminar separation bubble (LSB) in all the cases. However, for the thickest airfoil tested, the reverse flow region spreads over most of the airfoil and reaches the LSB location immediately before the LSB bursts and dynamic stall begins, suggesting that the stall could be triggered by the separated turbulent boundary layer. The results suggest that the boundary between different classifications of dynamic stall, particularly leading edge stall versus trailing edge stall, is blurred. The dynamic-stall onset mechanism changes gradually from one to the other with a gradual change in some parameters, in this case, airfoil thickness. 
    more » « less
  3. ABSTRACT

    We introduce MF-Box, an extended version of MFEmulator, designed as a fast surrogate for power spectra, trained using N-body simulation suites from various box sizes and particle loads. To demonstrate MF-Box’s effectiveness, we design simulation suites that include low-fidelity (LF) suites (L1 and L2) at 256 and $100 \, \rm {Mpc\, ~}h^{-1}$, each with 1283 particles, and a high-fidelity (HF) suite with 5123 particles at $256 \, \rm {Mpc\, ~}h^{-1}$, representing a higher particle load compared to the LF suites. MF-Box acts as a probabilistic resolution correction function, learning most of the cosmological dependencies from L1 and L2 simulations and rectifying resolution differences with just three HF simulations using a Gaussian process. MF-Box successfully emulates power spectra from our HF testing set with a relative error of $\lt 3~{{\ \rm per\ cent}}$ up to $k \simeq 7 \, h\rm {Mpc}{^{-1}}$ at z ∈ [0, 3], while maintaining a cost similar to our previous multifidelity approach, which was accurate only up to z = 1. The addition of an extra LF node in a smaller box significantly improves emulation accuracy for MF-Box at $k \gt 2 \, h\rm {Mpc}{^{-1}}$, increasing it by a factor of 10. We conduct an error analysis of MF-Box based on computational budget, providing guidance for optimizing budget allocation per fidelity node. Our proposed MF-Box enables future surveys to efficiently combine simulation suites of varying quality, effectively expanding the range of emulation capabilities while ensuring cost efficiency.

     
    more » « less
  4. In this study, the standard unsteady vortex lattice method (UVLM) is modified by different approaches to accommodate the viscous effects on the flow field and lift force history of a moving airfoil. Firstly, the conventional inviscid vortices are replaced with ones that satisfy Oseen’s approximation of the Navier–Stokes equations. These are known as viscous vortices and are a function of the Reynolds number. Compared to the standard UVLM, the results show a different behavior for the wake deformation at lower Reynolds numbers where the viscous effects are more dominant. The second modification is implemented by an elegant alteration in the conservation of circulation condition based on the fact that the whole domain composed of the fluid and solid can be treated as a single kinematic entity. The no-slip boundary condition enables considering the moving solid vorticity in the Kelvin condition, where the results for the frequency response indicate more phase lag compared to the standard UVLM or potential flow theories (i.e., Theodorsen), which increases at higher reduced frequencies. Furthermore, the effect of the position of the shed vortices is analyzed and seen to affect the amplitude of the resulting lift history. Finally, the no-slip boundary condition is also explicitly considered by implementing source singularities along the surface of a thick airfoil, resulting in a better prediction of the lift magnitude compared to CFD results. The combination of all the aforementioned modifications has the potential to enhance the performance of the UVLM in case of viscous flows at relatively high reduced frequencies. 
    more » « less
  5. null (Ed.)
    In this paper, we started by summarizing our recently developed viscous unsteady theory based on coupling potential flow with the triple deck boundary layer theory. This approach provides a viscous extension of potential flow unsteady aerodynamics. As such, a Reynolds- number-dependence could be determined. We then developed a finite-state approximation of such a theory, presenting it in a state space model. This novel nonlinear state space model of the viscous unsteady aerodynamic loads is expected to serve aerodynamicists better than the classical Theodorsen’s model, as it captures viscous effects (i.e., Reynolds number dependence) as well as nonlinearity and additional lag in the lift dynamics; and allows simulation of arbitrary time-varying airfoil motions (not necessarily harmonic). Moreover, being in a state space form makes it quite convenient for simulation and coupling with structural dynamics to perform aeroelasticity, flight dynamics analysis, and control design. We then proceeded to develop a linearization of such a model, which enables analytical results. So, we derived an analytical representation of the viscous lift frequency response function, which is an explicit function of, not only frequency, but also Reynolds number. We also developed a state space model of the linearized response. We finally simulated the nonlinear and linear models to a non- harmonic, small-amplitude pitching maneuver at 100 , 000 Reynolds number and compared the resulting lift and pitching moment with potential flow, in reference to relatively higher fidelity computations of the Unsteady Reynolds-Averaged Navier-Stokes equations. 
    more » « less