skip to main content


Title: Biodiversity Image Quality Metadata Augments Convolutional Neural Network Classification of Fish Species
Biodiversity image repositories are crucial sources for training machine learning approaches to support biological research. Metadata about object (e.g. image) quality is a putatively important prerequisite to selecting samples for these experiments. This paper reports on a study demonstrating the importance of image quality metadata for a species classification experiment involving a corpus of 1935 fish specimen images which were annotated with 22 metadata quality properties. A small subset of high quality images produced an F1 accuracy of 0.41 compared to 0.35 for a taxonomically matched subset low quality images when used by a convolutional neural network approach to species identification. Using the full corpus of images revealed that image quality differed between correctly classified and misclassified images. We found anatomical feature visibility was the most important quality feature for classification accuracy. We suggest biodiversity image repositories consider adopting a minimal set of image quality metadata to support machine learning.  more » « less
Award ID(s):
1940322 2022042 2118240
NSF-PAR ID:
10297895
Author(s) / Creator(s):
Editor(s):
Garoufallou E., Ovalle-Perandones MA.
Date Published:
Journal Name:
MTSR 2020. Communications in Computer and Information Science
Volume:
1355.
Page Range / eLocation ID:
3-12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null ; null (Ed.)
    Biodiversity image repositories are crucial sources of training data for machine learning approaches to biological research. Metadata, specifically metadata about object quality, is putatively an important prerequisite to selecting sample subsets for these experiments. This study demonstrates the importance of image quality metadata to a species classification experiment involving a corpus of 1935 fish specimen images which were annotated with 22 metadata quality properties. A small subset of high quality images produced an F1 accuracy of 0.41 compared to 0.35 for a taxonomically matched subset of low quality images when used by a convolutional neural network approach to species identification. Using the full corpus of images revealed that image quality differed between correctly classified and misclassified images. We found the visibility of all anatomical features was the most important quality feature for classification accuracy. We suggest biodiversity image repositories consider adopting a minimal set of image quality metadata to support future machine learning projects. 
    more » « less
  2. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  3. Conference Title: 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) Conference Start Date: 2021, Sept. 27 Conference End Date: 2021, Sept. 30 Conference Location: Champaign, IL, USAMetadata are key descriptors of research data, particularly for researchers seeking to apply machine learning (ML) to the vast collections of digitized specimens. Unfortunately, the available metadata is often sparse and, at times, erroneous. Additionally, it is prohibitively expensive to address these limitations through traditional, manual means. This paper reports on research that applies machine-driven approaches to analyzing digitized fish images and extracting various important features from them. The digitized fish specimens are being analyzed as part of the Biology Guided Neural Networks (BGNN) initiative, which is developing a novel class of artificial neural networks using phylogenies and anatomy ontologies. Automatically generated metadata is crucial for identifying the high-quality images needed for the neural network's predictive analytics. Methods that combine ML and image informatics techniques allow us to rapidly enrich the existing metadata associated with the 7,244 images from the Illinois Natural History Survey (INHS) used in our study. Results show we can accurately generate many key metadata properties relevant to the BGNN project, as well as general image quality metrics (e.g. brightness and contrast). Results also show that we can accurately generate bounding boxes and segmentation masks for fish, which are needed for subsequent machine learning analyses. The automatic process outperforms humans in terms of time and accuracy, and provides a novel solution for leveraging digitized specimens in ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories worldwide. 
    more » « less
  4. Abstract

    Advances in both hardware and software are enabling rapid proliferation of in situ plankton imaging methods, requiring more effective machine learning approaches to image classification. Deep Learning methods, such as convolutional neural networks (CNNs), show marked improvement over traditional feature‐based supervised machine learning algorithms, but require careful optimization of hyperparameters and adequate training sets. Here, we document some best practices in applying CNNs to zooplankton and marine snow images and note where our results differ from contemporary Deep Learning findings in other domains. We boost the performance of CNN classifiers by incorporating metadata of different types and illustrate how to assimilate metadata beyond simple concatenation. We utilize both geotemporal (e.g., sample depth, location, time of day) and hydrographic (e.g., temperature, salinity, chlorophylla) metadata and show that either type by itself, or both combined, can substantially reduce error rates. Incorporation of context metadata also boosts performance of the feature‐based classifiers we evaluated: Random Forest, Extremely Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer Perceptron. For our assessments, we use an original data set of 350,000 in situ images (roughly 50% marine snow and 50% non‐snow sorted into 26 categories) from a novel in situZooglider. We document asymptotically increasing performance with more computationally intensive techniques, such as substantially deeper networks and artificially augmented data sets. Our best model achieves 92.3% accuracy with our 27‐class data set. We provide guidance for further refinements that are likely to provide additional gains in classifier accuracy.

     
    more » « less
  5. Adam, N. ; Neuhold, E. ; Furuta, R. (Ed.)
    Metadata is a key data source for researchers seeking to apply machine learning (ML) to the vast collections of digitized biological specimens that can be found online. Unfortunately, the associated metadata is often sparse and, at times, erroneous. This paper extends previous research conducted with the Illinois Natural History Survey (INHS) collection (7244 specimen images) that uses computational approaches to analyze image quality, and then automatically generates 22 metadata properties representing the image quality and morphological features of the specimens. In the research reported here, we demonstrate the extension of our initial work to University of the Wisconsin Zoological Museum (UWZM) collection (4155 specimen images). Further, we enhance our computational methods in four ways: (1) augmenting the training set, (2) applying contrast enhancement, (3) upscaling small objects, and (4) refining our processing logic. Together these new methods improved our overall error rates from 4.6 to 1.1%. These enhancements also allowed us to compute an additional set of 17 image-based metadata properties. The new metadata properties provide supplemental features and information that may also be used to analyze and classify the fish specimens. Examples of these new features include convex area, eccentricity, perimeter, skew, etc. The newly refined process further outperforms humans in terms of time and labor cost, as well as accuracy, providing a novel solution for leveraging digitized specimens with ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories world-wide by generating accurate and valuable metadata for those repositories. 
    more » « less