skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Federated Learning for Audio Semantic Communication
In this paper, the problem of audio semantic communication over wireless networks is investigated. In the considered model, wireless edge devices transmit large-sized audio data to a server using semantic communication techniques. The techniques allow devices to only transmit audio semantic information that captures the contextual features of audio signals. To extract the semantic information from audio signals, a wave to vector (wav2vec) architecture based autoencoder is proposed, which consists of convolutional neural networks (CNNs). The proposed autoencoder enables high-accuracy audio transmission with small amounts of data. To further improve the accuracy of semantic information extraction, federated learning (FL) is implemented over multiple devices and a server. Simulation results show that the proposed algorithm can converge effectively and can reduce the mean squared error (MSE) of audio transmission by nearly 100 times, compared to a traditional coding scheme.  more » « less
Award ID(s):
2008646
PAR ID:
10297918
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Communications and Networks
Volume:
2
ISSN:
2673-530X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less
  2. null (Ed.)
    Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user-devices. We consider a multi-access edge computing (MEC) system with collocated MEC server and base-station/access point (AP), each equipped with a massive MIMO antenna array, supporting multiple users requesting data computation and wireless charging. The goal is to minimize the energy consumption for computation offloading and maximize the received energy at the user from wireless charging. The proposed solution is a novel two-stage algorithm employing nested descent algorithm, primal-dual subgradient and linear programming techniques to perform data partitioning and time allocation for computation offloading and design the optimal energy beamforming for wireless charging, all within MEC-AP transmit power and latency constraints. Algorithm results show that optimal energy beamforming significantly outperforms other schemes such as isotropic or directed charging without beam power allocation. Compared to binary offloading, data partition in partial offloading leads to lower energy consumption and more charging time, leading to better wireless charging performance. The charged energy over an extended period of multiple time-slots both with and without computation offloading can be substantial. Wireless charging from MEC-AP thus offers a viable untethered approach for supplying energy to user-devices. 
    more » « less
  3. null (Ed.)
    In this paper, we consider federated learning in wireless edge networks. Transmitting stochastic gradients (SG) or deep model's parameters over a limited-bandwidth wireless channel can incur large training latency and excessive power consumption. Hence, data compressing is often used to reduce the communication overhead. However, efficient communication requires the compression algorithm to satisfy the constraints imposed by the communication medium and take advantage of its characteristics, such as over-the-air computations inherent in wireless multiple-access channels (MAC), unreliable transmission and idle nodes in the edge network, limited transmission power, and preserving the privacy of data. To achieve these goals, we propose a novel framework based on Random Linear Coding (RLC) and develop efficient power management and channel usage techniques to manage the trade-offs between power consumption, communication bit-rate and convergence rate of federated learning over wireless MAC. We show that the proposed encoding/decoding results in an unbiased compression of SG, hence guaranteeing the convergence of the training algorithm without requiring error-feedback. Finally, through simulations, we show the superior performance of the proposed method over other existing techniques. 
    more » « less
  4. Integrated localization and communication (ILC) will be a key enabler for providing accurate location information and high data rate in next generation networks. This paper proposes a transmission frame structure and a soft information (SI)-based localization algorithm for position-assisted communications. The proposed ILC achieves improved localization accuracy and enhanced communication rate simultaneously by accounting for the statistical characteristics of the wireless environment. Results in 3rd Generation Partnership Project (3GPP) industrial scenarios show that the SI-based localization algorithm can achieve decimeter-level accuracy. Moreover, the position-assisted communication enhances the achievable rate, especially in scenarios with high mobility. 
    more » « less
  5. Semantic communication marks a new paradigm shift from bit-wise data transmission to semantic information delivery for the purpose of bandwidth reduction. To more effectively carry out specialized downstream tasks at the receiver end, it is crucial to define the most critical semantic message in the data based on the task or goal-oriented features. In this work, we propose a novel goal-oriented communication (GO-COM) framework, namely Goal-Oriented Semantic Variational Autoencoder (GOS-VAE), by focusing on the extraction of the semantics vital to the downstream tasks. Specifically, we adopt a Vector Quantized Variational Autoencoder (VQ-VAE) to compress media data at the transmitter side. Instead of targeting the pixel-wise image data reconstruction, we measure the quality-of-service at the receiver end based on a pre-defined task-incentivized model. Moreover, to capture the relevant semantic features in the data reconstruction, imitation learning is adopted to measure the data regeneration quality in terms of goal-oriented semantics. Our experimental results demonstrate the power of imitation learning in characterizing goal-oriented semantics and bandwidth efficiency of our proposed GOS-VAE. 
    more » « less