Decision-making under uncertainty (DMU) is present in many important problems. An open challenge is DMU in non-stationary environments, where the dynamics of the environment can change over time. Reinforcement Learning (RL), a popular approach for DMU problems, learns a policy by interacting with a model of the environment offline. Unfortunately, if the environment changes the policy can become stale and take sub-optimal actions, and relearning the policy for the updated environment takes time and computational effort. An alternative is online planning approaches such as Monte Carlo Tree Search (MCTS), which perform their computation at decision time. Given the current environment, MCTS plans using high-fidelity models to determine promising action trajectories. These models can be updated as soon as environmental changes are detected to immediately incorporate them into decision making. However, MCTS’s convergence can be slow for domains with large state-action spaces. In this paper, we present a novel hybrid decision-making approach that combines the strengths of RL and planning while mitigating their weaknesses. Our approach, called Policy Augmented MCTS (PA-MCTS), integrates a policy’s actin-value estimates into MCTS, using the estimates to seed the action trajectories favored by the search. We hypothesize that PA-MCTS will converge more quickly than standard MCTSmore »
SPOTTER: Extending Symbolic Planning Operators through Targeted Reinforcement Learning
Symbolic planning models allow decision-making agents to sequence actions in arbitrary ways to achieve a variety of goals in dynamic domains. However, they are typically handcrafted and tend to require precise formulations that are not robust to human error. Reinforcement learning (RL) approaches do not require such models, and instead learn domain dynamics by exploring the environment and collecting rewards. However, RL approaches tend to require millions of episodes of experience and often learn policies that are not easily transferable to other tasks. In this paper, we address one aspect of the open problem of integrating these approaches: how can decision-making agents resolve discrepancies in their symbolic planning models while attempting to accomplish goals? We propose an integrated framework named SPOTTER that uses RL to augment and support ("spot") a planning agent by discovering new operators needed by the agent to accomplish goals that are initially unreachable for the agent. SPOTTER outperforms pure-RL approaches while also discovering transferable symbolic knowledge and does not require supervision, successful plan traces or any a priori knowledge about the missing planning operator.
- Award ID(s):
- 2044786
- Publication Date:
- NSF-PAR ID:
- 10297984
- Journal Name:
- AAMAS Conference proceedings
- ISSN:
- 2523-5699
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sum-product networks (SPN) are knowledge compilation models and are related to other graphical models for efficient probabilistic inference such as arithmetic circuits and AND/OR graphs. Recent investigations into generalizing SPNs have yielded sum-product-max networks (SPMN) which offer a data-driven alternative for decision making that has predominantly relied on handcrafted models. However, SPMNs are not suited for decision-theoretic planning which involves sequential decision making over multiple time steps. In this paper, we present recurrent SPMNs (RSPMN) that learn from and model decision-making data over time. RSPMNs utilize a template network that is unfolded as needed depending on the length of the data sequence. This is significant as RSPMNs not only inherit the benefits of SPNs in being data driven and mostly tractable, they are also well suited for planning problems. We establish soundness conditions on the template network, which guarantee that the resulting SPMN is valid, and present a structure learning algorithm to learn a sound template. RSPMNs learned on a testbed of data sets, some generated using RDDLSim, yield MEUs and policies that are close to the optimal on perfectly-observed domains and easily improve on a recent batch-constrained RL method, which is important because RSPMNs offer a new model-based approachmore »
-
Mobile wireless networks present several challenges for any learning system, due to uncertain and variable device movement, a decentralized network architecture, and constraints on network resources. In this work, we use deep reinforcement learning (DRL) to learn a scalable and generalizable forwarding strategy for such networks. We make the following contributions: i) we use hierarchical RL to design DRL packet agents rather than device agents, to capture the packet forwarding decisions that are made over time and improve training efficiency; ii) we use relational features to ensure generalizability of the learned forwarding strategy to a wide range of network dynamics and enable offline training; and iii) we incorporate both forwarding goals and network resource considerations into packet decision-making by designing a weighted DRL reward function. Our results show that our DRL agent often achieves a similar delay per packet delivered as the optimal forwarding strategy and outperforms all other strategies including state-of-the-art strategies, even on scenarios on which the DRL agent was not trained.
-
Conventional reinforcement learning (RL) allows an agent to learn policies via environmental rewards only, with a long and slow learning curve, especially at the beginning stage. On the contrary, human learning is usually much faster because prior and general knowledge and multiple information resources are utilized. In this paper, we propose a PlannerActor-Critic architecture for huMAN-centered planning and learning (PACMAN), where an agent uses prior, high-level, deterministic symbolic knowledge to plan for goal-directed actions. PACMAN integrates Actor-Critic algorithm of RL to fine-tune its behavior towards both environmental rewards and human feedback. To the best our knowledge, This is the first unified framework where knowledge-based planning, RL, and human teaching jointly contribute to the policy learning of an agent. Our experiments demonstrate that PACMAN leads to a significant jump-start at the early stage of learning, converges rapidly and with small variance, and is robust to inconsistent, infrequent, and misleading feedback.
-
Recent successes of Reinforcement Learning (RL) allow an agent to learn policies that surpass human experts but suffers from being time-hungry and data-hungry. By contrast, human learning is significantly faster because prior and general knowledge and multiple information resources are utilized. In this paper, we propose a Planner-Actor-Critic architecture for huMAN-centered planning and learning (PACMAN), where an agent uses its prior, high-level, deterministic symbolic knowledge to plan for goal-directed actions, and also integrates the Actor-Critic algorithm of RL to fine-tune its behavior towards both environmental rewards and human feedback. This work is the first unified framework where knowledge-based planning, RL, and human teaching jointly contribute to the policy learning of an agent. Our experiments demonstrate that PACMAN leads to a significant jump-start at the early stage of learning, converges rapidly and with small variance, and is robust to inconsistent, infrequent, and misleading feedback.