skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Morphological and Molecular Analysis of a Bloom of the Filamentous Green Alga Pithophora
Filamentous representatives of Cladophorales (Chlorophyta) are major contributors to algal biomass of littoral communities. In the present study, community analysis of a reported bloom in the Ogeechee River in Georgia provided an opportunity to combine morphological and genetic analyses with ecological information related to an understudied nuisance alga. A polyphasic approach of incorporating genotypic and phenotypic methods led to the identification of the algal community as Pithophora roettleri (Roth) Wittrock. Morphological analysis showed a monospecific community based on the average length and diameter of the heterosporous intercalary and terminal akinetes, along with the diameter of the principal filaments. Single-gene and concatenated-gene phylogenetic analyses of the LSU (28S rRNA) and SSU (18S rRNA) markers further confirmed this species identification. In this study, we conducted a morphological treatment of P. roettleri, produced 17 novel gene sequences, and produced a new, schematic diagram illustrating the four steps of the asexual reproduction of an intercalary akinete. Morphological characteristics, like the position and shape of akinetes documented here, and the availability of genetic sequences can improve identification and further ecological understanding of filamentous green algae. Flowing mats of P. roettleri, like those observed in this study, can lower light availability for other biota and structurally alter the habitat.  more » « less
Award ID(s):
1919491
PAR ID:
10298149
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Water
Volume:
13
Issue:
6
ISSN:
2073-4441
Page Range / eLocation ID:
760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fields, David (Ed.)
    Abstract Community-based diversity analyses, such as metabarcoding, are increasingly popular in the field of metazoan zooplankton community ecology. However, some of the methodological uncertainties remain, such as the potential inflation of diversity estimates resulting from contamination by pseudogene sequences. Furthermore, primer affinity to specific taxonomic groups might skew community composition and structure during PCR. In this study, we estimated OTU (operational taxonomic unit) richness, Shannon’s H’, and the phylum-level community composition of samples from a coastal zooplankton community using four approaches: complement DNA (cDNA) and genomic DNA (gDNA) mitochondrial COI (Cytochrome oxidase subunit I) gene amplicon, metatranscriptome sequencing, and morphological identification. Results of mismatch distribution demonstrated that 90% is good threshold percentage to differentiate intra- and inter-species. Moderate level of correlations appeared upon comparing the species/OTU richness estimated from the different methods. Results strongly indicated that diversity inflation occurred in the samples amplified from gDNA because of mitochondrial pseudogene contamination (overall, gDNA produced two times more richness compared with cDNA amplicons). The unique community compositions observed in the PCR-based methods indicated that taxonomic amplification bias had occurred during the PCR. Therefore, it is recommended that PCR-free approaches be used whenever resolving community structure represents an essential aspect of the analysis. 
    more » « less
  2. DNA metabarcoding and morphological taxonomic (microscopic) analysis of the gut contents was used to examine diet diversity of seven species of fishes collected from mesopelagic depths (200-1000 m) in the NW Atlantic Ocean Slope Water during Summer 2018 and 2019. Metabarcoding used two gene regions: V9 hypervariable region of nuclear 18S rRNA and mitochondrial cytochrome oxidase I (COI). V9 sequences were classified into 14 invertebrate prey groups, excluding fish due to predator swamping. Ecological network analysis was used to evaluate relative strengths of predator-prey linkages. Multivariate statistical analysis revealed consistently distinct diets of four fish species in 2018 and/or 2019:Argyropelecus aculeatus, Chauliodus sloani, Hygophum hygomii, andSigmops elongatus. Three other species analyzed (Malacosteus niger, Nemichthys scolopaceus, andScopelogadus beanii) showed more variability between sampling years. COI sequences were classified into eight invertebrate prey groups, within which prey species were detected and identified. Considering all predator species together, a total of 77 prey species were detected with a minimum of 1,000 COI sequences, including 22 copepods, 18 euphausiids, and 7 amphipods. Morphological prey counts were classified into seven taxonomic groups, including a gelatinous group comprised of soft-bodied organisms. The ocean twilight zone or is home to exceptional diversity and biomass of marine fish, which are key players in deep sea food webs. This study used integrative morphological-molecular analysis to provide new insights into trophic relationships and sources of productivity for mesopelagic fishes, including identification of key prey species, recognition of the importance of gelatinous prey, and characterization of differences in diet among fish predators in the NW Atlantic Slope Water. 
    more » « less
  3. Introduction Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii , with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results Putative Planktothrix -specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015–2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events. 
    more » « less
  4. Abstract Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences (“barcodes”) of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes. 
    more » « less
  5. Cyanobacteria are important primary producers, sources of secondary metabolites, and sentinels of environmental change in aquatic ecosystems – including large estuaries. Here, we newly investigated cyanobacterial diversity within the Albemarle Pamlico Sound System (APES) using (16S rRNA) gene amplicon sequencing analyses. Substantial cyanobacterial diversity including lineages lacking current isolates were recovered (46 genera, 17 potentially cyanotoxic), with oligohaline waters of the Albemarle Sound and its tributaries being notable regional hotspot for diversity. Salinity and temperature were influential drivers of cyanobacterial community composition. Picocyanobacteria (cells <3 µm in diameter) were abundant in amplicon sequence libraries (72% of cyanobacterial sequences) – especially populations withinSynechococcusSubClade 5.2. Picocyanobacteria along with picoeukaryotes were large contributors to total phytoplankton biomass comprising ~47% of chlorophyll a. Further, the picocyanobacterial generaSynechococcus,Cyanobium, andSynechocystis(55.4%, 14.8%, and 12.9% of cyanobacterial sequences, respectively) formed a core community spanning from freshwater regions (eastern AST, D949) to polyhaline environments (NRE100 downstream stations to PS5), suggesting resilience to significant salinity fluctuations and associated environmental changes. Amplicon sequence variant (ASV) and environmental data indicate the presence of several putative ecotypes, as well as distinct abundance patterns among closely related populations, highlighting substantial fitness variability among subspecies. Notably, potentially cyanotoxic genera,Synechocystis,Planktothrix,Plectonema, andDolichospermumwere the four more abundant detected in polyhaline APES regions, far beyond conspicuous freshwater sources. These findings reveal previously unrecognized potential sources of cyanotoxics in estuarine food webs and habitats, underscoring the ecological significance of cyanobacterial community dynamics across salinity gradients. 
    more » « less