ABSTRACT Under accelerating threats from climate‐change impacts, marine protected areas (MPAs) have been proposed as climate‐adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite‐derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014–2016 marine heatwave regime that occurred in the region. We also leverage a 22‐year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three‐level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators—lobster and sheephead—are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate‐adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region‐specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate‐change impacts given their local ecological contexts, and what additional measures may be needed.
more »
« less
Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific
Abstract Kelp forests are globally important and highly productive ecosystems, yet their persistence and protection in the face of climate change and human activity are poorly known. Here, we present a 35-year time series of high-resolution satellite imagery that maps the distribution and persistence of giant kelp ( Macrocystis pyrifera ) forests along ten degrees of latitude in the Northeast Pacific Ocean. We find that although 7.7% of giant kelp is protected by marine reserves, when accounting for persistence only 4% of kelp is present and protected. Protection of giant kelp decreases southerly from 20.9% in Central California, USA, to less than 1% in Baja California, Mexico, which likely exacerbates kelp vulnerability to marine heatwaves in Baja California. We suggest that a two-fold increase in the area of kelp protected by marine reserves is needed to fully protect persistent kelp forests and that conservation of climate-refugia in Baja California should be a priority.
more »
« less
- PAR ID:
- 10298202
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Increased ocean temperatures have led to large‐scale declines in many ecologically important species, including kelp forests. Spatial heterogeneity across seascapes could protect kelp individuals and small populations from thermal stress and nutrient limitation. Habitat features within upwelling regions may facilitate the transport of deep, cold water into shallow systems, but little is known about the spatiotemporal occurrence or stability of these climate refugia. Kelp in climate refugia may, however, also experience other stressors, such as overgrazing by kelp herbivores, reducing their effectiveness.Here, we use high‐resolution kelp canopy maps generated from CubeSat constellation data to characterize kelp persistence in northern California following a dramatic decline in kelp abundance due to increased temperature and nutrient limitation during a severe marine heatwave and continued intense grazing pressure by purple sea urchins.Kelp persistence was associated with local areas of relatively cool water temperature and seascape features such as shallow depths and low‐complexity bathymetry, which may have provided refuge from overgrazing. However, a very small percentage of kelp forests in the region exhibited high persistence, with many forests present in only one or two of the 9 years studied. Most kelp patches were not spatially stable over time. Initially, kelp presence aligned with climate refugia, but as overgrazing emerged as the dominant driver of kelp distributions post‐2019, kelp shifted to areas that offered protection from grazing pressure.Synthesis. Cooler areas with localized upwelling acted as climate refugia during the increased ocean temperatures from the 2014–2016 marine heatwave, supporting nutrient‐rich environments and mitigating heat stress for kelp forests. However, these temperature refugia often did not spatially overlap with areas providing protection from grazing pressure, leaving kelp forests vulnerable to future warming even within temperature refugia if grazing pressure remains high.more » « less
-
Abstract Kelp forests are one of the earth’s most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081–2100) compared to contemporary (2001–2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.more » « less
-
In marine ecosystems, fishing often targets predators, which can drive direct and indirect effects on entire food webs. Marine reserves can induce trophic cascades by increasing predator density and body size, thereby increasing predation pressure on populations of herbivores, such as sea urchins. In California's northern Channel Islands, two species of sea urchins are abundant: the red urchin Mesocentrotus franciscanus , which is targeted by an economically valuable fishery, and the virtually unfished purple urchin Strongylocentrotus purpuratus . We hypothesized that urchin populations inside marine reserves would be depressed by higher predation, but that red urchins would be less affected due to fishing outside reserves. Instead, our analyses revealed that purple urchin populations were unaffected by reserves, and red urchin biomass significantly increased in response to protection. Therefore, urchin biomass overall has increased inside reserves, and we found no evidence that giant kelp is positively affected by reserves. Our results reveal the overwhelming direct effect of protecting fished species in marine reserves over indirect effects that are often predicted but seldom clearly documented. Indirect effects due to marine reserves may eventually occur in some cases, but very effective predators, large reserves or extended time periods may be needed to induce them.more » « less
-
Pérez-Matus, Alejandro (Ed.)Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts.more » « less
An official website of the United States government

