skip to main content

Title: First-Year Engineering Students’ Understanding and Application of Models: Comparing Impact of CATIA vs. MATLAB Courses
To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of modeling skills include physical, mathematical, computational, graphing, and financial. However, many students struggle to define and form relevant models in their engineering courses. We are hoping that the students are able to better define and apply models in their engineering courses after they have completed the MATLAB and/or CATIA courses. We also are hoping to see a difference in model identification between the MATLAB and CATIA courses. All students in the MATLAB and CATIA courses must be able to understand and create models in order to solve problems and think critically in engineering. Students need foundational knowledge about basic modeling skills that will be effective in their course. The goal is for students to create an approach to help them solve problems logically and apply different modeling skills.
Authors:
; ; ; ; ;
Award ID(s):
1827600
Publication Date:
NSF-PAR ID:
10298252
Journal Name:
ASEE Southeastern Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of modeling skills include physical, mathematical, computational, graphing, and financial. However, many students struggle to define and form relevant models in their engineering courses. We are hoping that the students are able to better define and apply models in their engineering courses after they have completed the MATLAB and/or CATIA courses. We also are hoping to see a difference in model identification between the MATLAB and CATIA courses. All students in the MATLAB and CATIA courses must be able to understand and create models in order to solve problems and think critically in engineering. Students need foundational knowledge about basic modeling skills that will be effective in their course. The goal is for students to create an approach to help them solve problems logically and apply different modeling skills.
  2. Background To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of models include physical, mathematical, computational, graphical, and financial, which are used both in academics, research, and industry. However, many students struggle to define, create, and apply relevant models in their engineering courses. Purpose (Research Questions) The research questions investigated in this study are: (1) What types of models do engineering students identify before and after completing a first-year engineering course? (2) How do students’ responses compare across different courses (a graphical communications course - EGR 120 and a programming course - EGR 115), and sections? Design/Methods The data used for this study were collected in two introductory first-year engineering courses offered during Fall 2019, EGR 115 and EGR 120. Students’ responses to a survey about modeling were qualitatively analyzed. The survey was given at the beginning and the end of the courses. The data analyzed consisted of 560 pre and post surveys for EGR 115 and 384 pre and post surveys for EGR 120. Results Once the analysis is complete, we are hoping to find that the students can better define and apply models in their engineering coursesmore »after they have completed the EGR 115 and/or EGR 120 courses.« less
  3. All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To be more successful in their studies and careers, students need a foundational knowledge about models. An adaptable approach can help students develop their modeling skills across a variety of modeling types, including physical models, mathematical models, logical models, and computational models. Physical models (e.g., prototypes) are the most common type of models that engineering students identify and discuss during the design process. There is a need to explicitly focus on varying types of models, model application, and model development in the engineering curriculum, especially on mathematical and computational models. This NSF project proposes two approaches to creating a holistic modeling environment for learning at two universities. These universities require different levels of revision to the existing first-year engineering courses or programs. The proposed approaches change to a unified language and discussion around modeling with the intent of contextualizing modeling as a fundamental tool within engineering. To evaluate student learning on modeling in engineering, we conducted pre and post surveys across three different first-year engineering courses at these two universities with different student demographics. The comparison between the pre andmore »post surveys highlighted student learning on engineering modeling based on different teaching and curriculum change approaches.« less
  4. Contribution: This study assesses more than 800 students' awareness of engineering model types before and after taking two first-year engineering courses across two semesters and evaluates the effect of each course. Background: All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To help them develop these skills, as a first step, it is essential to assess how to increase students' awareness of engineering models. According to Bloom's taxonomy, the lower remember and understand levels, which encompass awareness, are necessary for achieving the higher levels, such as apply, analyze, evaluate, and create. Research Questions: To what extent did student awareness of model types change after taking introductory engineering courses? To what extent did student awareness of model types differ by course or semester? Methodology: In this study, a survey was designed and administered at the beginning and end of the semester in two first-year engineering courses during two semesters in a mid-sized private school. The survey asked students questions about their definition of engineering modeling and different types of models. Findings: Overall, student awareness of model types increased from the beginning of the semester toward the end of the semester,more »across both semesters and courses. There were some differences between course sections, however, the students' awareness of the models at the end of the academic year was similar for both groups.« less
  5. Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »two submissions – (1) a mathematical model or algorithm (i.e. students’ written solution potentially with tables and figures) and (2) a computational model or program (i.e. students’ MATLAB code). The students’ solutions were graded by student graders after completing two required training sessions that consisted of assessing multiple sample student solutions using the rubrics to ensure consistency across grading. The resulting assessments of students’ works based on the rubrics were analyzed to identify patterns students’ submissions and comparisons across sections. The results identified differences existing in the mathematical and computational model development between students from the experimental and comparison groups. The students in the experimental group were able to better address the complexity of the problem. Most groups demonstrated similar levels and types of change across the submissions for the other dimensions related to the purpose of model components, addressing the users’ anticipated needs, and communicating their solutions. These findings help inform other researchers and instructors how to help students develop mathematical and computational modeling skills, especially in a programming course. This work is part of a larger NSF study about the impact of varying levels of modeling interventions related to different types of models on students’ awareness of different types of models and their applications, as well as their ability to apply and develop different types of models.« less