skip to main content

Title: Evidence for differentiation of the most primitive small bodies
Context. Dynamical models of Solar System evolution have suggested that the so-called P- and D-type volatile-rich asteroids formed in the outer Solar System beyond Neptune’s orbit and may be genetically related to the Jupiter Trojans, comets, and small Kuiper belt objects (KBOs). Indeed, the spectral properties of P- and D-type asteroids resemble that of anhydrous cometary dust. Aims. We aim to gain insights into the above classes of bodies by characterizing the internal structure of a large P- and D-type asteroid. Methods. We report high-angular-resolution imaging observations of the P-type asteroid (87) Sylvia with the Very Large Telescope Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. These images were used to reconstruct the 3D shape of Sylvia. Our images together with those obtained in the past with large ground-based telescopes were used to study the dynamics of its two satellites. We also modeled Sylvia’s thermal evolution. Results. The shape of Sylvia appears flattened and elongated (a/b ~1.45; a/c ~1.84). We derive a volume-equivalent diameter of 271 ± 5 km and a low density of 1378 ± 45 kg m −3 . The two satellites orbit Sylvia on circular, equatorial orbits. The oblateness of Sylvia should imply a detectable nodal precession which contrasts with the fully-Keplerian dynamics of its two satellites. This reveals an inhomogeneous internal structure, suggesting that Sylvia is differentiated. Conclusions. Sylvia’s low density and differentiated interior can be explained by partial melting and mass redistribution through water percolation. The outer shell should be composed of material similar to interplanetary dust particles (IDPs) and the core should be similar to aqueously altered IDPs or carbonaceous chondrite meteorites such as the Tagish Lake meteorite. Numerical simulations of the thermal evolution of Sylvia show that for a body of such a size, partial melting was unavoidable due to the decay of long-lived radionuclides. In addition, we show that bodies as small as 130–150 km in diameter should have followed a similar thermal evolution, while smaller objects, such as comets and the KBO Arrokoth, must have remained pristine, which is in agreement with in situ observations of these bodies. NASA Lucy mission target (617) Patroclus (diameter ≈140 km) may, however, be differentiated.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy and numerical modeling of their early thermal evolution. Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations. We analyzed the dynamics of the satellite with our Genoid meta-heuristic algorithm. Combining our high-angular resolution images with optical lightcurves and stellar occultations, we determine the spin period, orientation, and 3D shape, using our ADAM shape modeling algorithm. Results. The satellite orbits Daphne on an equatorial, quasi-circular, prograde orbit, like the satellites of many other large main-belt asteroids. The shape model of Daphne reveals several large flat areas that could be large impact craters. The mass determined from this orbit combined with the volume computed from the shape model implies a density for Daphne of 1.77 ± 0.26 g cm −3 (3 σ ). This densityis consistent with a primordial CM-like homogeneous internal structure with some level of macroporosity (≈ 17%). Conclusions. Based on our analysis of the density of Daphne and 75 other Ch/Cgh-type asteroids gathered from the literature, we conclude that the primordial internal structure of the CM parent bodies was homogeneous. 
    more » « less
  2. Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest ( D   ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D   ≥ 100 km and in particular most D   ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape ( c ∕ a ≤ 0.65). Densities in our sample range from ~1.3 g cm −3 (87 Sylvia) to ~4.3 g cm −3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor ( ρ ≥ 2.7 g cm −3 ) and volatile-rich ( ρ ≤ 2.2 g cm −3 ) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk. 
    more » « less
  3. Context. Asteroid (22) Kalliope is the second largest M-type asteroid in the main belt and is orbited by a satellite, Linus. Whereas the mass of Kalliope is already well constrained thanks to the presence of a moon, its volume is still poorly known, leading to uncertainties on its bulk density and internal structure. Aims. We aim to refine the shape of (22) Kalliope and thus its diameter and bulk density, as well as the orbit of its moon to better constrain its mass, hence density and internal structure. Methods. We acquired disk-resolved observations of (22) Kalliope using the VLT/SPHERE/ZIMPOL instrument to reconstruct its three-dimensional (3D) shape using three different modeling techniques. These images were also used together with new speckle observations at the C2PU/PISCO instrument as well as archival images from other large ground-based telescopes to refine the orbit of Linus. Results. The volume of (22) Kalliope given by the shape models, corresponding to D = 150 ± 5 km, and the mass constrained by its satellite’s orbit yield a density of ρ = 4.40 ± 0.46 g cm −3 . This high density potentially makes (22) Kalliope the densest known small body in the Solar System. A macroporosity in the 10–25% range (as expected for this mass and size), implies a grain density in the 4.8–5.9 g cm −3 range. Kalliope’s high bulk density, along with its silicate-rich surface implied by its low radar albedo, implies a differentiated interior with metal contributing to most of the mass of the body. Conclusions. Kalliope’s high metal content (40–60%) along with its metal-poor mantle makes it the smallest known Mercury-like body. A large impact at the origin of the formation of the moon Linus is likely the cause of its high metal content and density. 
    more » « less
  4. null (Ed.)
    Context. Asteroid (7) Iris is an ideal target for disk-resolved imaging owing to its brightness ( V ~ 7–8) and large angular size of 0.33′′ during its apparitions. Iris is believed to belong to the category of large unfragmented asteroids that avoided internal differentiation, implying that its current shape and topography may record the first few 100 Myr of the solar system’s collisional evolution. Aims. We recovered information about the shape and surface topography of Iris from disk-resolved VLT/SPHERE/ZIMPOL images acquired in the frame of our ESO large program. Methods. We used the All-Data Asteroid Modeling ( ADAM ) shape reconstruction algorithm to model the 3D shape of Iris, using optical disk-integrated data and disk-resolved images from SPHERE and earlier AO systems as inputs. We analyzed the SPHERE images and our model to infer the asteroid’s global shape and the morphology of its main craters. Results. We present the 3D shape, volume-equivalent diameter D eq = 214 ± 5 km, and bulk density ρ = 2.7 ± 0.3 g cm −3 of Iris. Its shape appears to be consistent with that of an oblate spheroid with a large equatorial excavation. We identified eight putative surface features 20–40 km in diameter detected at several epochs, which we interpret as impact craters, and several additional crater candidates. Craters on Iris have depth-to-diameter ratios that are similar to those of analogous 10 km craters on Vesta. Conclusions. The bulk density of Iris is consistent with that of its meteoritic analog based on spectroscopic observations, namely LL ordinary chondrites. Considering the absence of a collisional family related to Iris and the number of large craters on its surface, we suggest that its equatorial depression may be the remnant of an ancient (at least 3 Gyr) impact. Iris’s shape further opens the possibility that large planetesimals formed as almost perfect oblate spheroids. Finally, we attribute the difference in crater morphology between Iris and Vesta to their different surface gravities, and the absence of a substantial impact-induced regolith on Iris. 
    more » « less
  5. Introduction: With the capture of the first high- resolution, in-situ images of Near-Earth Objects (NEOs) a couple of decades ago [1–4], the ubiquity of regolith and the granular nature of small objects in the Solar System became apparent. Benefiting from an increased access to high computing power, new numerical studies emerged, modeling granular structures forming and evolving as small bodies in the Solar System [5–7]. Now adding laboratory studies on granular material strength for asteroid and other small body applications [8,9], we are steadily progressing in our understanding of how regolith is shaping the interiors and surfaces of these worlds. In addition, our ever-more powerful observation capabilities are uncovering interesting dust-related phenomena in the outer skirts of our Solar System, in the form of activity at large heliocentric distances and rings [10–12]. We find that our recent progress in understanding the behavior of granular material in small body environments also has applications to the more distant worlds of Centaurs and Trans-Neptunian Objects (TNOs). Internal Strength: We currently deduce internal friction of rubble piles from the observation of large numbers of small asteroids and their rotation rates, combined with the associated numerical simulations [13,14]. In the laboratory, we study internal friction of simulant materials using shear strength measurements [8]. Combining observations, modeling, and laboratory work, the picture emerges of rubble pile interiors being composed of coarse grains in the mm to cm range. The irregular shapes of the grains lead to mechanical interlocking, thus generating the internal friction required to match observations of the asteroid population [8,9]. We find that the presence of a fine fraction in the confined interior of a rubble pile actually leads weaker internal strength [9]. Surface Strength: Deducing surface regolith strength for NEOs is usually performed via average slope measurements [15–17] or, most notably, observing the outcome of an impact of known energy [18]. In the laboratory, we measure the angle of repose of simulant material via pouring tests, as well as its bulk cohesion using shear strength measurements [8]. In some cases, this allows us to infer grain size ranges for various regions of the surface and subsurface of pictured NEOs, beyond the resolution of their in-situ images. Surface Activity: The Rosetta mission revealed that a number of activity events on comet 67P/Churyumov–Gerasimenko were linked to active surface geology, most notably avalanches and cliff collapses [19]. In addition, the role of regolith strength in asteroid disruption patterns has been inferred from numerical simulations of rotating rubble piles [20]. By studying strength differences in simulant samples, it becomes apparent that a difference in cohesion between a surface and its subsurface layer can lead to activity events with surface mass shedding, without the presence of volatiles sublimating as a driver [8]. We show that such differences in surface strength can be brought upon by a depletion in fine grains or a change in composition (e.g. depletion in water ice) and could account for regular activity patterns on small bodies, independently of their distance to the Sun. This is of particular interest to the study of Centaur activity and a potential mechanism for feeding ring systems. 
    more » « less