skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NEOMOD: A New Orbital Distribution Model for Near-Earth Objects
Abstract Near-Earth Objects (NEOs) are a transient population of small bodies with orbits near or in the terrestrial planet region. They represent a mid-stage in the dynamical cycle of asteroids and comets, which starts with their removal from the respective source regions—the main belt and trans-Neptunian scattered disk—and ends as bodies impact planets, disintegrate near the Sun, or are ejected from the solar system. Here we develop a new orbital model of NEOs by numerically integrating asteroid orbits from main-belt sources and calibrating the results on observations of the Catalina Sky Survey. The results imply a size-dependent sampling of the main belt with the ν 6 and 3:1 resonances producing ≃30% of NEOs with absolute magnitudes H = 15 and ≃80% of NEOs with H = 25. Hence, the large and small NEOs have different orbital distributions. The inferred flux of H < 18 bodies into the 3:1 resonance can be sustained only if the main-belt asteroids near the resonance drift toward the resonance at the maximal Yarkovsky rate (≃2 × 10 −4 au Myr −1 for diameter D = 1 km and semimajor axis a = 2.5 au). This implies obliquities θ ≃ 0° for a < 2.5 au and θ ≃ 180° for a > 2.5 au, both in the immediate neighborhood of the resonance (the same applies to other resonances as well). We confirm the size-dependent disruption of asteroids near the Sun found in previous studies. An interested researcher can use the publicly available NEOMOD Simulator to generate user-defined samples of NEOs from our model.  more » « less
Award ID(s):
2009775
PAR ID:
10448456
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
166
Issue:
2
ISSN:
0004-6256
Page Range / eLocation ID:
55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Catalina Sky Survey (CSS) is a major survey of Near-Earth Objects (NEOs). In a recent work, we used CSS observations from 2005–2012 to develop a new population model of NEOs (NEOMOD). CSS’s G96 telescope was upgraded in 2016 and detected over 10,000 unique NEOs since then. Here we characterize the NEO detection efficiency of G96 and use G96’s NEO detections from 2013–2022 to update NEOMOD. This resolves previous model inconsistencies related to the population of large NEOs. We estimate there are 936 ± 29 NEOs with absolute magnitude 𝐻 < 17.75 (diameter 𝐷 > 1 km for the reference albedo 𝑝V = 0.14) and semimajor axis 𝑎 < 4.2 au. The slope of the NEO size distribution for 𝐻 = 25–28 is found to be relatively shallow (cumulative index ≃ 2.6) and the number of 𝐻 < 28 NEOs (𝐷 > 9 m for 𝑝V = 0.14) is determined to be (1.20 ± 0.04) × 107 , about 3 times lower than in Harris & Chodas (2021). Small NEOs have a different orbital distribution and higher impact probabilities than large NEOs. We estimate 0.034 ± 0.002 impacts of 𝐻 < 28 NEOs on the Earth per year, which is near the low end of the impact flux range inferred from atmospheric bolide observations. Relative to a model where all NEOs are delivered directly from the main belt, the population of small NEOs detected by G96 shows an excess of low-eccentricity orbits with 𝑎 ≃ 1–1.6 au that appears to increase with 𝐻 (≃ 30% excess for 𝐻 = 28). We suggest that the population of very small NEOs is boosted by tidal disruption of large NEOs during close encounters to the terrestrial planets. When the effect of tidal disruption is (approximately) accounted for in the model, we estimate 0.06 ± 0.01 impacts of 𝐻 < 28 NEOs on the Earth per year, which is more in line with the bolide data. The impact probability of a 𝐻 < 22 (𝐷 > 140 m for 𝑝V = 0.14) object on the Earth in this millennium is estimated to be ≃ 4.5% 
    more » « less
  2. NA (Ed.)
    Our previous model (NEOMOD2) for the orbital and absolute magnitude distribution of Near Earth Objects (NEOs) was calibrated on the Catalina Sky Survey observations between 2013 and 2022. Here we extend NEOMOD2 to include visible albedo information from the Wide-Field Infrared Survey Explorer. The debiased albedo distribution of NEOs can be approximated by the sum of two Rayleigh distributions with the scale parameters 𝑝V,dark ≃ 0.03 and 𝑝V,bright ≃ 0.17. We find evidence for smaller NEOs having (on average) higher albedos than larger NEOs; this is likely a consequence of the size-dependent sampling of different main belt sources. These inferences and the absolute magnitude distribution from NEOMOD2 are used to construct the debiased size distribution of NEOs. We estimate 830±60 NEOs with diameters 𝐷 > 1 km and 20,000±2,000 NEOs with 𝐷 > 140 m. The new model, NEOMOD3, is available via the NEOMOD Simulator — an easy-to-operate code that can be used to generate user-defined samples (orbits, sizes and albedos) from the model. 
    more » « less
  3. Abstract We are conducting a survey using twilight time on the Dark Energy Camera with the Blanco 4 m telescope in Chile to look for objects interior to Earth’s and Venus’ orbits. To date we have discovered two rare Atira/Apohele asteroids, 2021 LJ4 and 2021 PH27, which have orbits completely interior to Earth’s orbit. We also discovered one new Apollo-type Near Earth Object (NEO) that crosses Earth’s orbit, 2022 AP7. Two of the discoveries have diameters ≳1 km. 2022 AP7 is likely the largest Potentially Hazardous Asteroid (PHA) discovered in about eight years. To date we have covered 624 square degrees of sky near to and interior to the orbit of Venus. The average images go to 21.3 mag in the r band, with the best images near 22nd mag. Our new discovery 2021 PH27 has the smallest semimajor axis known for an asteroid, 0.4617 au, and the largest general relativistic effects (53 arcsec/century) known for any body in the solar system. The survey has detected ∼15% of all known Atira NEOs. We put strong constraints on any stable population of Venus co-orbital resonance objects existing, as well as the Atira and Vatira asteroid classes. These interior asteroid populations are important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that cannot easily be discovered in other surveys. Comparing the actual population of asteroids found interior to Earth and Venus with those predicted to exist by extrapolating from the known population exterior to Earth is important to better understand the origin, composition, and structure of the NEO population. 
    more » « less
  4. Abstract The UKIRT Hemisphere Survey covers the northern sky in the infrared from 0° to 60° decl. Current data releases include bothJandKbands, withH-band data forthcoming. Here, we present a novel pipeline to recover asteroids from this survey data. We recover 26,138 reliable observations, corresponding to 23,399 unique asteroids, from these public data. We measureJ–Kcolors for 601 asteroids. Our survey extends about 2 mag deeper than the Two-Micron All-Sky Survey. We find that our small inner main belt objects are less red than larger inner belt objects, perhaps because smaller asteroids are collisionally younger, with surfaces that have been less affected by space weathering. In the middle and outer main belts, we find our small asteroids to be redder than larger objects in their same orbits, possibly due to observational bias or a disproportionate population of very red objects among these smaller asteroids. Future work on this project includes extracting moving object measurements fromH-andY-band data when it becomes available. 
    more » « less
  5. Abstract The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets. 
    more » « less