skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.  more » « less
Award ID(s):
1810898
PAR ID:
10298547
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
26406 to 26413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body tempera- ture and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse. 
    more » « less
  2. Abstract The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice andMus musculusNAc showed thatHcrtr2was more abundant thanHcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance. 
    more » « less
  3. Abstract Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area‐anterior hypothalamus (POA‐AH) of nest‐holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal‐acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin‐expressing somata and in the distribution of fibers, especially in brainstem vocal‐acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA‐AH neurons express galanin and the nonapeptides arginine‐vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph‐specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA‐AH neurons that coexpress galanin and the neurotransmitter γ‐aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide‐expressing populations; and play a role in male‐specific behaviors. 
    more » « less
  4. The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent. 
    more » « less
  5. Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety. 
    more » « less