Is a drought a drought in grasslands? Productivity responses to different types of drought
- Award ID(s):
- 2025849
- PAR ID:
- 10298591
- Date Published:
- Journal Name:
- Oecologia
- ISSN:
- 0029-8549
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Droughts are anticipated to intensify in many parts of the world due to climate change. However, the issue of drought definition, namely the diversity of drought indices, makes it difficult to compare drought assessments. This issue is widely known, but its relative importance has never been quantitatively evaluated in comparison to other sources of uncertainty. Here, encompassing three drought categories (meteorological, agricultural, and hydrological droughts) with four temporal scales of interest, we evaluated changes in the drought frequency using multi-model and multi-scenario simulations to identify areas where the definition issue could result in pronounced uncertainties and to what extent. We investigated the disagreement in the signs of changes between drought definitions and decomposed the variance into four main factors: drought definitions, greenhouse gas concentration scenarios, global climate models, and global water models, as well as their interactions. The results show that models were the primary sources of variance over 82% of the global land area. On the other hand, the drought definition was the dominant source of variance in the remaining 17%, especially in parts of northern high-latitudes. Our results highlight specific regions where differences in drought definitions result in a large spread among projections, including areas showing opposite signs of significant changes. At a global scale, 7% of the variance resulted independently from the definition issue, and that value increased to 44% when 1st and 2nd order interactions were considered. The quantitative results suggest that by clarifying hydrological processes or sectors of interest, one could avoid these uncertainties in drought assessments to obtain a clearer picture of future drought change.more » « less
-
Sevanto, Sanna (Ed.)
-
Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone.more » « less
An official website of the United States government

