The Faraday rotation measure (RM) is a commonly used tool to trace electron number density and magnetic fields in hot accretion flows, particularly in low-luminosity accreting supermassive black holes. We focus on the nuclear region of M87, which was observed at 230 GHz (1.3 mm) by the Event Horizon Telescope in 2019. It remains unclear whether this emission originates from the accretion flow, the jet base, or both. To probe the presence of an accretion flow, we explore the scenario where the linearly polarized emission from the counter jet, visible at 43 GHz (7 mm), is Faraday-rotated by the accretion flow. We calculate theoretical predictions for counter-jet polarization using analytical and numerical models. In all cases, we find a Faraday-thick flow at 43 GHz (7 mm), with RM ∼ 106rad m−2, and a polarization angle that follows a linear relationship with wavelength squared, consistent with external Faraday rotation. The more realistic model, which includes turbulence and magnetic field fluctuations, predicts that the polarization pattern should be time-dependent, and that the counter-jet emission is depolarized due to Faraday depth fluctuations across the accretion flow. Despite the Faraday thick regime and strong depolarization, the linear relationship persists, enabling us to constrain the flow’s physical properties. Comparing the counter-jet and forward-jet linear polarization states should enable detection of M87’s accretion flow and provide lower limits on electron density, magnetic field strength, and mass accretion rate.
more »
« less
Gradient measurement of synchrotron polarization diagnostic: Application to spatially separated emission and Faraday rotation regions
ABSTRACT Considering the spatially separated polarization radiation and Faraday rotation regions to simulate complex interstellar media, we study synchrotron polarization gradient techniques’ measurement capabilities. We explore how to trace the direction of projected magnetic field of emitting-source region at the multifrequency bands, using the gradient technique compared with the traditional polarization vector method. Furthermore, we study how Faraday rotation density in the foreground region, i.e. a product of electron number density and parallel component of magnetic fields along the line of sight, affects the measurement of projected magnetic field. Numerical results show that synchrotron polarization gradient technique could successfully trace projected magnetic field within emitting-source region independent of radio frequency. Accordingly, the gradient technique can measure the magnetic field properties for a complex astrophysical environment.
more »
« less
- Award ID(s):
- 1816234
- PAR ID:
- 10298684
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 505
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 6206 to 6216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate general relativistic magnetohydrodynamic simulations to determine the physical origin of the twisty patterns of linear polarization seen in spatially resolved black hole images and explain their morphological dependence on black hole spin. By characterizing the observed emission with a simple analytic ring model, we find that the twisty morphology is determined by the magnetic field structure in the emitting region. Moreover, the dependence of this twisty pattern on spin can be attributed to changes in the magnetic field geometry that occur due to the frame dragging. By studying an analytic ring model, we find that the roles of Doppler boosting and lensing are subdominant. Faraday rotation may cause a systematic shift in the linear polarization pattern, but we find that its impact is subdominant for models with strong magnetic fields and modest ion-to-electron temperature ratios. Models with weaker magnetic fields are much more strongly affected by Faraday rotation and have more complicated emission geometries than can be captured by a ring model. However, these models are currently disfavoured by the recent EHT observations of M87*. Our results suggest that linear polarization maps can provide a probe of the underlying magnetic field structure around a black hole, which may then be usable to indirectly infer black hole spins. The generality of these results should be tested with alternative codes, initial conditions, and plasma physics prescriptions.more » « less
-
We present wideband (1 − 6.5 GHz) polarimetric observations, obtained with the Karl G. Jansky Very Large Array, of the merging galaxy cluster MACS J0717.5+3745, which hosts one of the most complex known radio relic and halo systems. We used both rotation measure synthesis and QU -fitting to find a reasonable agreement of the results obtained with these methods, particularly when the Faraday distribution is simple and the depolarization is mild. The relic is highly polarized over its entire length (850 kpc), reaching a fractional polarization > 30% in some regions. We also observe a strong wavelength-dependent depolarization for some regions of the relic. The northern part of the relic shows a complex Faraday distribution, suggesting that this region is located in or behind the intracluster medium (ICM). Conversely, the southern part of the relic shows a rotation measure very close to the Galactic foreground, with a rather low Faraday dispersion, indicating very little magnetoionic material intervening along the line of sight. Based on a spatially resolved polarization analysis, we find that the scatter of Faraday depths is correlated with the depolarization, indicating that the tangled magnetic field in the ICM causes the depolarization. We conclude that the ICM magnetic field could be highly turbulent. At the position of a well known narrow-angle-tailed galaxy (NAT), we find evidence of two components that are clearly separated in the Faraday space. The high Faraday dispersion component seems to be associated with the NAT, suggesting the NAT is embedded in the ICM while the southern part of the relic lies in front of it. If true, this implies that the relic and this radio galaxy are not necessarily physically connected and, thus, the relic may, in fact, not be powered by the shock re-acceleration of fossil electrons from the NAT. The magnetic field orientation follows the relic structure indicating a well-ordered magnetic field. We also detected polarized emission in the halo region; however, the absence of significant Faraday rotation and a low value of Faraday dispersion suggests the polarized emission that was previously considered as the part of the halo does, in fact, originate from the shock(s).more » « less
-
Abstract Magnetic fields and their dynamical interplay with matter in galaxy clusters contribute to the physical properties and evolution of the intracluster medium. However, the current understanding of the origin and properties of cluster magnetic fields is still limited by observational challenges. In this article, we map the magnetic fields at hundreds-kpc scales of five clusters RXC J1314.4-2515, Abell 2345, Abell 3376, MCXC J0352.4-7401, and El Gordo using the synchrotron intensity gradient technique in conjunction with high-resolution radio observations from the Jansky Very Large Array (JVLA) and the Karoo Array Telescope (MeerKAT). We demonstrate that the magnetic field orientation of radio relics derived from synchrotron intensity gradient is in agreement with that obtained with synchrotron polarization. Most importantly, the synchrotron intensity gradient is not limited by Faraday depolarization in the cluster central regions and allows us to map magnetic fields in the radio halos of RXC J1314.4-2515 and El Gordo. We find that magnetic fields in radio halos exhibit a preferential direction along the major merger axis and show turbulent structures at higher angular resolution. The results are consistent with expectations from numerical simulations, which predict turbulent magnetic fields in cluster mergers that are stirred and amplified by matter motions.more » « less
-
ABSTRACT Using the first station of the Long Wavelength Array (LWA1), we examine polarized pulsar emission between 25 and 88 MHz. Polarized light from pulsars undergoes Faraday rotation as it passes through the magnetized interstellar medium. Observations from low-frequency telescopes are ideal for obtaining precise rotation measures (RMs) because the effect of Faraday rotation is proportional to the square of the observing wavelength. With these RMs, we obtained polarized pulse profiles to see how polarization changes in the 25–88 MHz range. The RMs were also used to derive values for the electron-density-weighted average Galactic magnetic field along the line of sight. We present RMs and polarization profiles of 15 pulsars acquired using data from LWA1. These results provide new insight into low-frequency polarization characteristics and pulsar emission heights, and complement measurements at higher frequencies.more » « less
An official website of the United States government

