skip to main content

Title: Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: transformation between Cartesian and ray-centred coordinates
SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate the more » transformation of higher-order derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability of function value and derivatives of volumetric parameters in a higher-order representation of the subsurface model. « less
Authors:
; ; ; ;
Award ID(s):
1815143
Publication Date:
NSF-PAR ID:
10298817
Journal Name:
Geophysical Journal International
Volume:
226
Issue:
2
Page Range or eLocation-ID:
893 to 927
ISSN:
0956-540X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Dynamic ray tracing is a robust and efficient method for computation of amplitude and phase attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value in mapping, modelling and imaging, where kernel operations are based on extrapolation or interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4) numerical errors due to redundancies are less likely to influence the computation of the Green’s function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example we show that interpolation of dynamic ray tracing quantities along a wavefront can be done withmore »much better consistency in ray-centred coordinates than in Cartesian coordinates. In both examples we measure consistency by means of constraints on the dynamic ray tracing quantities in the 3-D position space and in the 6-D phase space.« less
  2. We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surface-based coordinate systems. For problems involving tracer transport in a given velocity field, the semi-Lagrangian framework allows these new methods to avoid the use of any stabilization terms (such as hyperviscosity) during time-integration, thus reducing the number of parameters that have to be tuned. The three new methods are based on interpolation using 1) global RBFs, 2) local RBF stencils, and 3) RBF partition of unity. For the latter two of these methods, we find that it is crucial to include some low degree spherical harmonics in the interpolants. Standard test cases consisting of solid body rotation and deformational flow are used to compare and contrast the methods in terms of their accuracy, efficiency, conservation properties, and dissipation/dispersion errors. For global RBFs, spectral spatial convergence is observed for smooth solutions on quasi-uniform nodes, while high-order accuracy is observed for the local RBF stencil and partition of unitymore »approaches.« less
  3. Multi-layered inter-dependent networks have emerged in a wealth of high-impact application domains. Cross-layer dependency inference, which aims to predict the dependencies between nodes across different layers, plays a pivotal role in such multi-layered network systems. Most, if not all, of existing methods exclusively follow a coupling principle of design and can be categorized into the following two groups, including (1) heterogeneous network embedding based methods (data coupling), and (2) collaborative filtering based methods (module coupling). Despite the favorable achievement, methods of both types are faced with two intricate challenges, including (1) the sparsity challenge where very limited observations of cross-layer dependencies are available, resulting in a deteriorated prediction of missing dependencies, and (2) the dynamic challenge given that the multi-layered network system is constantly evolving over time. In this paper, we first demonstrate that the inability of existing methods to resolve the sparsity challenge roots in the coupling principle from the perspectives of both data coupling and module coupling. Armed with such theoretical analysis, we pursue a new principle where the key idea is to decouple the within-layer connectivity from the observed cross-layer dependencies. Specifically, to tackle the sparsity challenge for static networks, we propose FITO-S, which incorporates a positionmore »embedding matrix generated by random walk with restart and the embedding space transformation function. More essentially, the decoupling principle ameliorates the dynamic challenge, which naturally leads to FITO-D, being capable of tracking the inference results in the dynamic setting through incrementally updating the position embedding matrix and fine-tuning the space transformation function. Extensive evaluations on real-world datasets demonstrate the superiority of the proposed framework FITO for cross-layer dependency inference.« less
  4. Ultraviolet radiation (UVR) from the sun is essential for the prebiotic syntheses of nucleotides, but it can also induce photolesions such as the cyclobutane pyrimidine dimers (CPDs) to RNA or DNA oligonucleotide in prebiotic Earth. 2,6-Diaminopurine (26DAP) has been proposed to repair CPDs in high yield under prebiotic conditions and be a key component in enhancing the photostability of higher-order prebiotic DNA structures. However, its electronic relaxation pathways have not been studied, which is necessary to know whether 26DAP could have survived the intense UV fluxes of the prebiotic Earth. We investigate the electronic relaxation mechanism of both 26DAP and its 2′-deoxyribonucleoside (26DAP-d) in aqueous solution using steady-state and femtosecond transient absorption measurements that are complemented with electronic-structure calculations. The results demonstrate that both purine derivatives are significantly photostable to UVR. It is shown that upon excitation at 287 nm, the lowest energy 1 ππ* state is initially populated. The population then branches following two relaxation coordinates in the 1 ππ* potential energy surface, which are identified as the C2- and C6-relaxation coordinates. The population following the C6-coordinate internally converts to the ground state nonradiatively through a nearly barrierless conical intersection within 0.7 ps in 26DAP or within 1.1 psmore »in 26DAP-d. The population that follows the C2-relaxation coordinate decays back to the ground state by a combination of nonradiative internal conversion via a conical intersection and fluorescence emission from the 1 ππ* minimum in 43 ps and 1.8 ns for the N9 and N7 tautomers of 26DAP, respectively, or in 70 ps for 26DAP-d. Fluorescence quantum yields of 0.037 and 0.008 are determined for 26DAP and 26DAP-d, respectively. Collectively, it is demonstrated that most of the excited state population in 26DAP and 26DAP-d decays back to the ground state via both nonradiative and radiative relaxation pathways. This result lends support to the idea that 26DAP could have accumulated in large enough quantities during the prebiotic era to participate in the formation of prebiotic RNA or DNA oligomers and act as a key component in the protection of the prebiotic genetic alphabet.« less
  5. SUMMARY We report finite-frequency imaging of the global 410- and 660-km discontinuities using boundary sensitivity kernels for traveltime measurements made on SS precursors. The application of finite-frequency sensitivity kernels overcomes resolution limits in previous studies associated with large Fresnel zones of SS precursors and their interferences with other seismic phases. In this study, we calculate the finite-frequency sensitivities of SS waves and their precursors based on a single-scattering (Born) approximation in the framework of travelling-wave mode summation. The global discontinuity surface is parametrized using a set of triangular gridpoints with a lateral spacing of about 4°, and we solve the linear finite-frequency inverse problem (2-D tomography) based on singular value decomposition (SVD). The new global models start to show a number of features that were absent (or weak) in ray-theoretical back-projection models at spherical harmonic degree l > 6. The thickness of the mantle transition zone correlates well with wave speed perturbations at a global scale, suggesting dominantly thermal origins for the lateral variations in the mantle transition zone. However, an anticorrelation between the topography of the 410-km discontinuity and wave speed variations is not observed at a global scale. Overall, the mantle transition zone is about 2–3 km thicker beneathmore »the continents than in oceanic regions. The new models of the 410- and 660-km discontinuities show better agreement with the finite-frequency study by Lawrence & Shearer than other global models obtained using SS precursors. However, significant discrepancies between the two models exist in the Pacific Ocean and major subduction zones at spherical harmonic degree >6. This indicates the importance of accounting for wave interactions in the calculations of sensitivity kernels as well as the use of finite-frequency sensitivities in data quality control.« less