skip to main content


Title: Archaeological Central American maize genomes suggest ancient gene flow from South America
Maize (Zea mays ssp. mays) domestication began in southwestern Mexico ~9,000 calendar years before present (cal. BP) and humans dispersed this important grain to South America by at least 7000 cal. BP as a partial domesticate. South America served as a secondary improvement center where the domestication syndrome became fixed and new lineages emerged in parallel with similar processes in Mesoamerica. Later, Indigenous cultivators carried a second major wave of maize southward from Mesoamerica, but it is unclear whether the deeply divergent maize lineages underwent any subsequent gene flow between these regions. Here we report ancient maize genomes (2,300-1,900 cal. BP) from El Gigante rock-shelter, Honduras, that are closely related to ancient and modern maize from South America. Our findings suggest that genetic material from long-divergent South American maize was reintroduced to Central America. Direct radiocarbon dates and cob morphological data from the rock-shelter suggest that more productive maize varieties developed between 4,300 and 2,500 cal BP. We hypothesize that the hybridization of South and Central American maize may have been a source of genetic diversity and hybrid vigor as maize was becoming a staple grain in Central- and Meso- America.  more » « less
Award ID(s):
1757383
NSF-PAR ID:
10298843
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
117
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
33124-33129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The genetic prehistory of human populations in Central America is largely unexplored leaving an important gap in our knowledge of the global expansion of humans. We report genome-wide ancient DNA data for a transect of twenty individuals from two Belize rock-shelters dating between 9,600-3,700 calibrated radiocarbon years before present (cal. BP). The oldest individuals (9,600-7,300 cal. BP) descend from an Early Holocene Native American lineage with only distant relatedness to present-day Mesoamericans, including Mayan-speaking populations. After ~5,600 cal. BP a previously unknown human dispersal from the south made a major demographic impact on the region, contributing more than 50% of the ancestry of all later individuals. This new ancestry derived from a source related to present-day Chibchan speakers living from Costa Rica to Colombia. Its arrival corresponds to the first clear evidence for forest clearing and maize horticulture in what later became the Maya region. 
    more » « less
  2. Abstract Data from rock shelters in southern Belize show evidence of tool making, hunting, and aquatic resource exploitation by 10,500 cal b.c. ; the shelters functioned as mortuary sites between 7600 and 2000 cal b.c. Early Holocene contexts contain stemmed and barbed bifaces as part of a tradition found broadly throughout the neotropics. After around 6000 cal b.c. , bifacial tools largely disappear from the record, likely reflecting a shift to increasing reliance on plant foods, around the same time that the earliest domesticates appear in the archaeological record in the neotropics. We suggest that people living in southern Belize maintained close ties with neighbors to the south during the Early Holocene, but lagged behind in innovating new crops and farming technologies during the Middle Holocene. Maize farming in Belize intensified between 2750–2050 cal b.c. as maize became a dietary staple, 1000–1300 years later than in South America. Overall, we argue from multiple lines of data that the Neotropics of Central and South America were an area of shared information and technologies that heavily influenced cultural developments in southeastern Mesoamerica during the Early and Middle Holocene. 
    more » « less
  3. South America is a megadiverse continent that witnessed the domestication, translocation and cultivation of various plant species from seemingly contrasting ecosystems. It was the recipient and supplier of crops brought to and from Mesoamerica (such as maize and cacao, respectively), and Polynesia to where the key staple crop sweet potato was exported. Not every instance of the trans -ecological expansion of cultivated plants (both domesticated and wild), however, resulted in successful farming. Here, we review the transregional circulation and introduction of five food tropical crops originated in the tropical and humid valleys of the eastern Andes—achira, cassava, ahipa , sweet potato, and pacay—to the hyper-arid coastal valleys of the Atacama Desert of northern Chile, where they have been found in early archeological sites. By means of an evaluation of the contexts of their deposition and supported by direct radiocarbon dating, stable isotopes analyses, and starch grain analysis, we evaluate different hypotheses for explaining their introduction and adaptation to the hyper-arid soils of northern Chile, by societal groups that after the introduction of cultigens still retained a strong dependence on marine hunting, gathering and fishing ways of life based on wide variety of marine coast resources. Many of the studied plants were part of a broader package of introduced goods and technological devices and procedures, linked to food, therapeutic medicine, social and ritual purposes that transformed previous hunter-gatherer social, economic, and ideological institutions. Based on archeological data, we discuss some of the possible socio-ecological processes involved in the development of agricultural landscapes including the adoption of tropical crops originated several hundred kilometers away from the Atacama Desert during the Late Holocene. 
    more » « less
  4. null (Ed.)
    Maize is a cultigen of global economic importance, but when it first became a staple grain in the Americas, was unknown and contested. Here, we report direct isotopic dietary evidence from 52 radiocarbon-dated human skeletons from two remarkably well-preserved rock-shelter contexts in the Maya Mountains of Belize spanning the past 10,000 years. Individuals dating before ~4700 calendar years before present (cal B.P.) show no clear evidence for the consumption of maize. Evidence for substantial maize consumption (~30% of total diet) appears in some individuals between 4700 and 4000 cal B.P. Isotopic evidence after 4000 cal B.P. indicates that maize became a persistently used staple grain comparable in dietary significance to later maize agriculturalists in the region (>70% of total diet). These data provide the earliest definitive evidence for maize as a staple grain in the Americas. 
    more » « less
  5. Abstract The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface. 
    more » « less