skip to main content


Title: Predicting plasma conditions necessary for synthesis of γ-Al 2 O 3 nanocrystals
Nonthermal plasma (NTP) offers a unique synthesis environment capable of producing nanocrystals of high melting point materials at relatively low gas temperatures. Despite the rapidly growing material library accessible through NTP synthesis, designing processes for new materials is predominantly empirically driven. Here, we report on the synthesis of both amorphous alumina and γ-Al 2 O 3 nanocrystals and present a simple particle heating model that is suitable for predicting the plasma power necessary for crystallization. The heating model only requires the composition, temperature, and pressure of the background gas along with the reactor geometry to calculate the temperature of particles suspended in the plasma as a function of applied power. Complete crystallization of the nanoparticle population was observed when applied power was greater than the threshold where the calculated particle temperature is equal to the crystallization temperature of amorphous alumina.  more » « less
Award ID(s):
1640899
NSF-PAR ID:
10298860
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
26
ISSN:
2040-3364
Page Range / eLocation ID:
11387 to 11395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hf0.5Zr0.5O2‐based materials have garnered significant attention for applications requiring ferroelectricity at the nanoscale. This behavior arises due to the stabilization of metastable phases at room temperature. However, the synthesis of phase pure Hf0.5Zr0.5O2remains a challenging problem in both thin films and nanoparticles. Herein, the crystallization of Hf0.5Zr0.5O2nanoparticles from an as‐synthesized amorphous phase is studied. By tailoring the aggregate nature of the intermediate amorphous nanoparticles via different drying processes, the crystallization pathway can be altered, resulting in significant differences in crystal structure, crystallite size, and crystallite morphology after calcination. X‐ray diffraction (XRD) and Rietveld refinement show the dominant crystallographic phase changes from a monoclinic structure to a cubic structure for samples with decreased aggregation. Samples prepared via freeze drying exhibit the most aggregation control and correspond with the observation of single‐crystalline particle aggregates and branching structures attributed to a crystallization by particle attachment mechanism. Herein, differing crystallization pathways lead to unique crystal morphologies that stabilize the traditionally high‐temperature phases of Hf0.5Zr0.5O2‐based materials that are necessary for functional applications.

     
    more » « less
  2. Abstract

    Advances in nanoscience have enabled the synthesis of nanomaterials, such as graphene, from low‐value or waste materials through flash Joule heating. Though this capability is promising, the complex and entangled variables that govern nanocrystal formation in the Joule heating process remain poorly understood. In this work, machine learning (ML) models are constructed to explore the factors that drive the transformation of amorphous carbon into graphene nanocrystals during flash Joule heating. An XGBoost regression model of crystallinity achieves anr2score of 0.8051 ± 0.054. Feature importance assays and decision trees extracted from these models reveal key considerations in the selection of starting materials and the role of stochastic current fluctuations in flash Joule heating synthesis. Furthermore, partial dependence analyses demonstrate the importance of charge and current density as predictors of crystallinity, implying a progression from reaction‐limited to diffusion‐limited kinetics as flash Joule heating parameters change. Finally, a practical application of the ML models is shown by using Bayesian meta‐learning algorithms to automatically improve bulk crystallinity over many Joule heating reactions. These results illustrate the power of ML as a tool to analyze complex nanomanufacturing processes and enable the synthesis of 2D crystals with desirable properties by flash Joule heating.

     
    more » « less
  3. Abstract

    III–V semiconductor nanocrystals are an important class of optoelectronic materials. However, the gas‐phase synthesis of these materials, especially of the stibnides, has been left relatively unexplored. In this study, we demonstrate the synthesis of free‐standing GaSb nanocrystals for the first time, using a novel gas‐phase process. We show that when elemental aerosols are used as precursors for Ga and Sb, the elements mix at the nanometer length scale as the aerosols pass through a nonequilibrium plasma reactor. At sufficiently high plasma power, the mixing produces free‐standing GaSb nanocrystals, with a small amount of excess Ga segregated at the periphery of the particles. The reaction is initiated by vaporization of elemental aerosols in the plasma despite the low‐background temperature. Ion bombardment determines the extent of vaporization of Ga and Sb and thereby controls the ensemble stoichiometry and reaction rates.

     
    more » « less
  4. Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems. 
    more » « less
  5.  
    more » « less