skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase mixing in GaSb nanocrystals synthesized by nonequilibrium plasma aerotaxy
Abstract III–V semiconductor nanocrystals are an important class of optoelectronic materials. However, the gas‐phase synthesis of these materials, especially of the stibnides, has been left relatively unexplored. In this study, we demonstrate the synthesis of free‐standing GaSb nanocrystals for the first time, using a novel gas‐phase process. We show that when elemental aerosols are used as precursors for Ga and Sb, the elements mix at the nanometer length scale as the aerosols pass through a nonequilibrium plasma reactor. At sufficiently high plasma power, the mixing produces free‐standing GaSb nanocrystals, with a small amount of excess Ga segregated at the periphery of the particles. The reaction is initiated by vaporization of elemental aerosols in the plasma despite the low‐background temperature. Ion bombardment determines the extent of vaporization of Ga and Sb and thereby controls the ensemble stoichiometry and reaction rates.  more » « less
Award ID(s):
1702334
PAR ID:
10131155
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plasma Processes and Polymers
Volume:
17
Issue:
5
ISSN:
1612-8850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Material properties of Ga–Sb binary alloy thin films deposited under ultra-high vacuum conditions were studied for analog phase change memory (PCM) applications. Crystallization of this alloy was shown to occur in the temperature range of 180–264 °C, with activation energy >2.5 eV depending on the composition. X-ray diffraction (XRD) studies showed phase separation upon crystallization into two phases, Ga-doped A7 antimony and cubic zinc-blende GaSb. Synchrotron in situ XRD analysis revealed that crystallization into the A7 phase is accompanied by Ga out-diffusion from the grains. X-ray absorption fine structure studies of the local structure of these alloys demonstrated a bond length decrease with a stable coordination number of 4 upon amorphous-to-crystalline phase transformation. Mushroom cell structures built with Ga–Sb alloys on ø110 nm TiN heater show a phase change material resistance switching behavior with resistance ratio >100 under electrical pulse measurements. TEM and Energy Dispersive Spectroscopy (EDS) studies of the Ga–Sb cells after ∼100 switching cycles revealed that partial SET or intermediate resistance states are attained by the variation of the grain size of the material as well as the Ga content in the A7 phase. A mechanism for a reversible composition control is proposed for analog cell performance. These results indicate that Te-free Ga–Sb binary alloys are potential candidates for analog PCM applications. 
    more » « less
  2. Sb thin films have attracted wide interest due to their tunable band structure, topological phases, high electron mobility, and thermoelectric properties. We successfully grow epitaxial Sb thin films on a closely lattice-matched GaSb(001) surface by molecular beam epitaxy. We find a novel anisotropic directional dependence on their structural, morphological, and electronic properties. The origin of the anisotropic features is elucidated using first-principles density functional theory (DFT) calculations. The growth regime of crystalline and amorphous Sb thin films was determined by mapping the surface reconstruction phase diagram of the GaSb(001) surface under Sb2 flux, with confirmation of structural characterizations. Crystalline Sb thin films show a rhombohedral crystal structure along the rhombohedral (211) surface orientation parallel to the cubic (001) surface orientation of the GaSb substrate. At this coherent interface, Sb atoms are aligned with the GaSb lattice along the [1̄10] crystallographic direction but are not aligned well along the [110] crystallographic direction, which results in anisotropic features in reflection of high-energy electron diffraction patterns, misfit dislocation formation, surface morphology, and transport properties. Our DFT calculations show that the preferential orientation of the rhombohedral Sb (211) plane may originate from the GaSb surface, where Sb atoms align with the Ga and Sb atoms on the reconstructed surface. The formation energy calculations confirm the stability of the experimentally observed structures. Our results provide optimal film growth conditions for further studies of novel properties of Bi1−xSbx thin films with similar lattice parameters and an identical crystal structure, as well as functional heterostructures of them with III–V semiconductor layers along the (001) surface orientation, supported by a theoretical understanding of the anisotropic film orientation. 
    more » « less
  3. Properties of a double-period InAs/GaSb superlattice grown by solid-source molecular beam epitaxy are presented. Precise growth conditions at the InAs/GaSb heterojunction yielded abrupt heterointerfaces and superior material quality as verified by X-ray diffraction and transmission electron microscopy (TEM) analysis. Moreover, high-resolution TEM imaging and elemental composition profiling of the InAs/GaSb heterostructure demonstrated abrupt atomic transitions between each Sb- or As-containing epilayer. An 8 × 8 k · p model is used to compute the electronic band structure of the constituent long- and short-period superlattices, taking into account the effects of conduction and valence band mixing, quantum confinement, pseudomorphic strain, and magnetic field on the calculated dispersions. Magnetotransport measurements over a variable temperature range (390 mK to 294 K) show anisotropic transport exhibiting a striking magnetoresistance and show Shubnikov-de Haas oscillations, the latter being indicative of high quality material synthesis. The measurements also reveal the existence of at least two carrier populations contributing to in-plane conductance in the structure. 
    more » « less
  4. null (Ed.)
    Nonthermal plasma (NTP) offers a unique synthesis environment capable of producing nanocrystals of high melting point materials at relatively low gas temperatures. Despite the rapidly growing material library accessible through NTP synthesis, designing processes for new materials is predominantly empirically driven. Here, we report on the synthesis of both amorphous alumina and γ-Al 2 O 3 nanocrystals and present a simple particle heating model that is suitable for predicting the plasma power necessary for crystallization. The heating model only requires the composition, temperature, and pressure of the background gas along with the reactor geometry to calculate the temperature of particles suspended in the plasma as a function of applied power. Complete crystallization of the nanoparticle population was observed when applied power was greater than the threshold where the calculated particle temperature is equal to the crystallization temperature of amorphous alumina. 
    more » « less
  5. Abstract While ∼30% of materials are reported to be topological, topological insulators are rare. Magnetic topological insulators (MTI) are even harder to find. Identifying crystallographic features that can host the coexistence of a topological insulating phase with magnetic order is vital for finding intrinsic MTI materials. Thus far, most materials that are investigated for the determination of an MTI are some combination of known topological insulators with a magnetic ion such as MnBi2Te4. Motivated by the recent success of EuIn2As2, the role of chemical pressure on topologically trivial insulator is investigated, Eu5In2Sb6via Ga substitution. Eu5Ga2Sb6is predicted to be topological but is synthetically difficult to stabilize. The intermediate compositions between Eu5In2Sb6and Eu5Ga2Sb6are observed through theoretical works to explore a topological phase transition and band inversion mechanism. The band inversion mechanism is attributed to changes in Eu–Sb hybridization as Ga is substituted for In due to chemical pressure. Eu5In4/3Ga2/3Sb6is also synthesized, the highest Ga concentration in Eu5In2‐xGaxSb6, and report the thermodynamic, magnetic, transport, and Hall properties. Overall, the work paints a picture of a possible MTI via band engineering and explains why Eu‐based Zintl compounds are suitable for the co‐existence of magnetism and topology. 
    more » « less