Anisotropic optical properties of single Si2Te3 nanoplates
Abstract We report a combined experimental and computational study of the optical properties of individual silicon telluride (Si 2 Te 3 ) nanoplates. The p-type semiconductor Si 2 Te 3 has a unique layered crystal structure with hexagonal closed-packed Te sublattices and Si–Si dimers occupying octahedral intercalation sites. The orientation of the silicon dimers leads to unique optical and electronic properties. Two-dimensional Si 2 Te 3 nanoplates with thicknesses of hundreds of nanometers and lateral sizes of tens of micrometers are synthesized by a chemical vapor deposition technique. At temperatures below 150 K, the Si 2 Te 3 nanoplates exhibit a direct band structure with a band gap energy of 2.394 eV at 7 K and an estimated free exciton binding energy of 150 meV. Polarized reflection measurements at different temperatures show anisotropy in the absorption coefficient due to an anisotropic orientation of the silicon dimers, which is in excellent agreement with theoretical calculations of the dielectric functions. Polarized Raman measurements of single Si 2 Te 3 nanoplates at different temperatures reveal various vibrational modes, which agree with density functional perturbation theory calculations. The unique structural and optical properties of nanostructured Si 2 Te 3 hold great potential applications in optoelectronics and chemical sensing.
- Publication Date:
- NSF-PAR ID:
- 10298942
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Silicon telluride (Si2Te3) is a silicon-based 2D chalcogenide with potential applications in optoelectronics. It has a unique crystal structure where Si atoms form Si-Si dimers to occupy the “metal” sites. In this paper, we report an ab initio computational study of its optical dielectric properties using the GW approximation and the Bethe-Salpeter equation (BSE). Strong in-plane optical anisotropy is discovered. The imaginary part of the dielectric constant in the direction parallel to the Si-Si dimers is found to be much lower than that perpendicular to the dimers. The optical measurement of the absorption spectra of 2D Si2Te3 nanoplates showsmore »
-
Abstract Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split
H 4andH 5and the degenerateH 6valence bands (VB) and the lowest degenerateH 6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH 6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriersmore » -
The prediction of new materials with peculiar topological properties is always desirable to achieve new properties and applications. In this work, by means of density functional theory computations, we extend the rule-breaking chemical bonding of planar pentacoordinate silicon (ppSi) into a periodic system: a C 2v Ca 4 Si 2 2− molecular building block containing a ppSi center is identified first, followed by the construction of an infinite CaSi monolayer, which is essentially a two-dimensional (2D) network of the Ca 4 Si 2 motif. The moderate cohesive energy, absence of imaginary phonon modes, and good resistance to high temperature indicatemore »
-
Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect densitymore »
-
Delafossite structured ternary nitrides, ABN 2 , have been of recent experimental investigation for applications such as tandem solar and photoelectrochemical cells. We present a thorough first principles computational investigation of their stability, electronic structure, and optical properties. Nine compounds, where A = Cu, Ag, Au and B = V, Nb, Ta, were studied. For three of these compounds, CuTaN 2 , CuNbN 2 , and AgTaN 2 , our computations agree well with experimental results. Optimized lattice parameters, formation energies, and mechanical properties have been computed using the generalized gradient approximation (GGA). Phonon density of states computed at zero-temperaturemore »