skip to main content


Title: Anisotropic optical properties of single Si2Te3 nanoplates
Abstract We report a combined experimental and computational study of the optical properties of individual silicon telluride (Si 2 Te 3 ) nanoplates. The p-type semiconductor Si 2 Te 3 has a unique layered crystal structure with hexagonal closed-packed Te sublattices and Si–Si dimers occupying octahedral intercalation sites. The orientation of the silicon dimers leads to unique optical and electronic properties. Two-dimensional Si 2 Te 3 nanoplates with thicknesses of hundreds of nanometers and lateral sizes of tens of micrometers are synthesized by a chemical vapor deposition technique. At temperatures below 150 K, the Si 2 Te 3 nanoplates exhibit a direct band structure with a band gap energy of 2.394 eV at 7 K and an estimated free exciton binding energy of 150 meV. Polarized reflection measurements at different temperatures show anisotropy in the absorption coefficient due to an anisotropic orientation of the silicon dimers, which is in excellent agreement with theoretical calculations of the dielectric functions. Polarized Raman measurements of single Si 2 Te 3 nanoplates at different temperatures reveal various vibrational modes, which agree with density functional perturbation theory calculations. The unique structural and optical properties of nanostructured Si 2 Te 3 hold great potential applications in optoelectronics and chemical sensing.  more » « less
Award ID(s):
1709528 1709612
NSF-PAR ID:
10298942
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Silicon telluride (Si2Te3) is a silicon-based 2D chalcogenide with potential applications in optoelectronics. It has a unique crystal structure where Si atoms form Si-Si dimers to occupy the “metal” sites. In this paper, we report an ab initio computational study of its optical dielectric properties using the GW approximation and the Bethe-Salpeter equation (BSE). Strong in-plane optical anisotropy is discovered. The imaginary part of the dielectric constant in the direction parallel to the Si-Si dimers is found to be much lower than that perpendicular to the dimers. The optical measurement of the absorption spectra of 2D Si2Te3 nanoplates shows modulation of the absorption coefficient under 90-degree rotation, confirming the computational results. We show the optical anisotropy originates from the particular compositions of the wavefunctions in the valence and conduction bands. Because it is associated with the Si dimer orientation, the in-plane optical anisotropy can potentially be dynamically controlled by electrical field and strain, which may be useful for new device design. In addition, BSE calculations reduce GW quasiparticle band gap by 0.3 eV in bulk and 0.6 eV in monolayer, indicating a large excitonic effect in Si2Te3. Furthermore, including electron-hole interaction in bulk calculations significantly reduces the imaginary part of the dielectric constant in the out-of-plane direction, suggesting strong interlayer exciton effect in Si2Te3 multilayers. 
    more » « less
  2. Abstract Silicon telluride (Si 2 Te 3 ) has emerged as one of the many contenders for 2D materials ideal for the fabrication of atomically thin devices. Despite the progress which has been made in the electric and optical properties of silicon telluride, much work is still needed to better understand this material. We report here on the Raman study of Si 2 Te 3 degradation under both annealing and in situ heating with a laser. Both processes caused pristine Si 2 Te 3 to degrade into tellurium and silicon oxide in air in the absence of a protective coating. A previously unreported Raman peak at ∼140 cm −1 was observed from the degraded samples and is found to be associated with pure tellurium. This peak was previously unresolved with the peak at 144 cm −1 for pristine Si 2 Te 3 in the literature and has been erroneously assigned as a signature Raman peak of pure Si 2 Te 3 , which has caused incorrect interpretations of experimental data. Our study has led to a fundamental understanding of the Raman peaks in Si 2 Te 3 , and helps resolve the inconsistent issues in the literature. This study is not only important for fundamental understanding but also vital for material characterization and applications. 
    more » « less
  3. Abstract

    Solution‐processable semiconducting 2D nanoplates and 1D nanorods are attractive building blocks for diverse technologies, including thermoelectrics, optoelectronics, and electronics. However, transforming colloidal nanoparticles into high‐performance and flexible devices remains a challenge. For example, flexible films prepared by solution‐processed semiconducting nanocrystals are typically plagued by poor thermoelectric and electrical transport properties. Here, a highly scalable 3D conformal additive printing approach to directly convert solution‐processed 2D nanoplates and 1D nanorods into high‐performing flexible devices is reported. The flexible films printed using Sb2Te3nanoplates and subsequently sintered at 400 °C demonstrate exceptional thermoelectric power factor of 1.5 mW m−1K−2over a wide temperature range (350–550 K). By synergistically combining Sb2Te32D nanoplates with Te 1D nanorods, the power factor of the flexible film reaches an unprecedented maximum value of 2.2 mW m−1K−2at 500 K, which is significantly higher than the best reported values for p‐type flexible thermoelectric films. A fully printed flexible generator device exhibits a competitive electrical power density of 7.65 mW cm−2with a reasonably small temperature difference of 60 K. The versatile printing method for directly transforming nanoscale building blocks into functional devices paves the way for developing not only flexible energy harvesters but also a broad range of flexible/wearable electronics and sensors.

     
    more » « less
  4. Abstract

    Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation.

     
    more » « less
  5. null (Ed.)
    Abstract Alloyed transition metal dichalcogenides provide an opportunity for coupling band engineering with valleytronic phenomena in an atomically-thin platform. However, valley properties in alloys remain largely unexplored. We investigate the valley degree of freedom in monolayer alloys of the phase change candidate material WSe 2(1-x) Te 2x . Low temperature Raman measurements track the alloy-induced transition from the semiconducting 1H phase of WSe 2 to the semimetallic 1T d phase of WTe 2 . We correlate these observations with density functional theory calculations and identify new Raman modes from W-Te vibrations in the 1H-phase alloy. Photoluminescence measurements show ultra-low energy emission features that highlight alloy disorder arising from the large W-Te bond lengths. Interestingly, valley polarization and coherence in alloys survive at high Te compositions and are more robust against temperature than in WSe 2 . These findings illustrate the persistence of valley properties in alloys with highly dissimilar parent compounds and suggest band engineering can be utilized for valleytronic devices. 
    more » « less