skip to main content


Search for: All records

Award ID contains: 1709612

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, enhanced second‐harmonic generation (SHG) is demonstrated from individual plasmonic nanopatch antennas (NPAs) which are formed by separating silver nanocubes from a smooth gold film using a sub‐10 nm zinc oxide spacer layer. When the NPAs are excited at their fundamental plasmon frequency, a 104‐fold increase in the intensity of the SHG wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second‐order nonlinear exciton–polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using NPAs thus provides an excellent platform for nonlinear control of the light−matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased surface to volume ratio leading to potentially new applications. In this manuscript, we report for the very first time the synthesis of bismuth oxide (Bi 2 O 3 ) nano-flakes by pulsed laser ablation in liquids without any external assistance (no acoustic, electric field, or magnetic field). The synthesis was performed by irradiating, pure bismuth needles immerged in de-ionized water, at very high fluence ∼160 J cm −2 in order to be highly selective and only promote the growth of two-dimensional structures. The x - and y -dimensions of the flakes were around 1 μm in size while their thickness was 47.0 ± 12.7 nm as confirmed by AFM analysis. The flakes were confirmed to be α- and γ-Bi 2 O 3 by SAED and Raman spectroscopy. By using this mixture of flakes, we demonstrated that the nanostructures can be used as antimicrobial agents, achieving a complete inhibition of Gram positive (MSRA) and Gram negative bacteria (MDR-EC) at low concentration, ∼50 ppm. 
    more » « less
  5. null (Ed.)
    Abstract We report a combined experimental and computational study of the optical properties of individual silicon telluride (Si 2 Te 3 ) nanoplates. The p-type semiconductor Si 2 Te 3 has a unique layered crystal structure with hexagonal closed-packed Te sublattices and Si–Si dimers occupying octahedral intercalation sites. The orientation of the silicon dimers leads to unique optical and electronic properties. Two-dimensional Si 2 Te 3 nanoplates with thicknesses of hundreds of nanometers and lateral sizes of tens of micrometers are synthesized by a chemical vapor deposition technique. At temperatures below 150 K, the Si 2 Te 3 nanoplates exhibit a direct band structure with a band gap energy of 2.394 eV at 7 K and an estimated free exciton binding energy of 150 meV. Polarized reflection measurements at different temperatures show anisotropy in the absorption coefficient due to an anisotropic orientation of the silicon dimers, which is in excellent agreement with theoretical calculations of the dielectric functions. Polarized Raman measurements of single Si 2 Te 3 nanoplates at different temperatures reveal various vibrational modes, which agree with density functional perturbation theory calculations. The unique structural and optical properties of nanostructured Si 2 Te 3 hold great potential applications in optoelectronics and chemical sensing. 
    more » « less
  6. Confining and controlling light in extreme subwavelength scales are tantalizing tasks. In this work, we report a study of individual plasmonic film-coupled nanostar resonators where polarized plasmonic optical modes are trapped in ultrasmall volumes. Individual gold nanostars, separated from a flat gold film by a thin dielectric spacer layer, exhibit a strong light confinement between the sub-10 nm volume of the nanostar's tips and the film. Through dark field scattering measurements of many individual nanostars, a statistical observation of the scattered spectra is obtained and compared with extensive simulation data to reveal the origins of the resonant peaks. We observe that an individual nanostar on a flat gold film can result in a resonant spectrum with single, double or multiple peaks. Further, these resonant peaks are strongly polarized under white light illumination. Our simulation data revealed that the resonant spectrum of an individual film-coupled nanostar resonator is related to the symmetry of the nanostar, as well as the orientation of the nanostar relative to its placement on the gold substrate. Our results demonstrate a simple new method to create an ultrasmall mode volume and polarization sensitive plasmonic platform which could be useful for applications in sensing or enhanced light–matter interactions. 
    more » « less
  7. Random lasing occurs as the result of a coherent optical feedback from multiple scattering centers. Here, we demonstrate that plasmonic gold nanostars are efficient light scattering centers, exhibiting strong field enhancement at their nanotips, which assists a very narrow bandwidth and highly amplified coherent random lasing with a low lasing threshold. First, by embedding plasmonic gold nanostars in a rhodamine 6G dye gain medium, we observe a series of very narrow random lasing peaks with full-width at half-maximum ∼ 0.8 nm. In contrast, free rhodamine 6G dye molecules exhibit only a single amplified spontaneous emission peak with a broader linewidth of 6 nm. The lasing threshold for the dye with gold nanostars is two times lower than that for a free dye. Furthermore, by coating the tip of a single-mode optical fiber with gold nanostars, we demonstrate a collection of random lasing signal through the fiber that can be easily guided and analyzed. Time-resolved measurements show a significant increase in the emission rate above the lasing threshold, indicating a stimulated emission process. Our study provides a method for generating random lasing in the nanoscale with low threshold values that can be easily collected and guided, which promise a range of potential applications in remote sensing, information processing, and on-chip coherent light sources.

     
    more » « less