skip to main content


Title: AID: Active Distillation Machine to Leverage Pre-Trained Black-Box Models in Private Data Settings
This paper presents an active distillation method for a local institution (e.g., hospital) to find the best queries within its given budget to distill an on-server black-box model’s predictive knowledge into a local surrogate with transparent parameterization. This allows local institutions to understand better the predictive reasoning of the black-box model in its own local context or to further customize the distilled knowledge with its private dataset that cannot be centralized and fed into the server model. The proposed method thus addresses several challenges of deploying machine learning (ML) in many industrial settings (e.g., healthcare analytics) with strong proprietary constraints. These include: (1) the opaqueness of the server model’s architecture which prevents local users from understanding its predictive reasoning in their local data contexts; (2) the increasing cost and risk of uploading local data on the cloud for analysis; and (3) the need to customize the server model with private onsite data. We evaluated the proposed method on both benchmark and real-world healthcare data where significant improvements over existing local distillation methods were observed. A theoretical analysis of the proposed method is also presented.  more » « less
Award ID(s):
2028839
NSF-PAR ID:
10298952
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Web conference
Page Range / eLocation ID:
3569 to 3581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the increasing adoption of predictive models trained using machine learning across a wide range of high-stakes applications, e.g., health care, security, criminal justice, finance, and education, there is a growing need for effective techniques for explaining such models and their predictions. We aim to address this problem in settings where the predictive model is a black box; That is, we can only observe the response of the model to various inputs, but have no knowledge about the internal structure of the predictive model, its parameters, the objective function, and the algorithm used to optimize the model. We reduce the problem of interpreting a black box predictive model to that of estimating the causal effects of each of the model inputs on the model output, from observations of the model inputs and the corresponding outputs. We estimate the causal effects of model inputs on model output using variants of the Rubin Neyman potential outcomes framework for estimating causal effects from observational data. We show how the resulting causal attribution of responsibility for model output to the different model inputs can be used to interpret the predictive model and to explain its predictions. We present results of experiments that demonstrate the effectiveness of our approach to the interpretation of black box predictive models via causal attribution in the case of deep neural network models trained on one synthetic data set (where the input variables that impact the output variable are known by design) and two real-world data sets: Handwritten digit classification, and Parkinson's disease severity prediction. Because our approach does not require knowledge about the predictive model algorithm and is free of assumptions regarding the black box predictive model except that its input-output responses be observable, it can be applied, in principle, to any black box predictive model. 
    more » « less
  2. Frasch, Martin G. (Ed.)
    With the wider availability of healthcare data such as Electronic Health Records (EHR), more and more data-driven based approaches have been proposed to improve the quality-of-care delivery. Predictive modeling, which aims at building computational models for predicting clinical risk, is a popular research topic in healthcare analytics. However, concerns about privacy of healthcare data may hinder the development of effective predictive models that are generalizable because this often requires rich diverse data from multiple clinical institutions. Recently, federated learning (FL) has demonstrated promise in addressing this concern. However, data heterogeneity from different local participating sites may affect prediction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high prevalence among patients admitted to intensive care units (ICU), the early prediction of these conditions based on AI is an important topic in critical care medicine. In this study, we take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of data heterogeneity in the FL framework as well as compare performances across frameworks. We built predictive models based on local, pooled, and FL frameworks using EHR data across multiple hospitals. The local framework only used data from each site itself. The pooled framework combined data from all sites. In the FL framework, each local site did not have access to other sites’ data. A model was updated locally, and its parameters were shared to a central aggregator, which was used to update the federated model’s parameters and then subsequently, shared with each site. We found models built within a FL framework outperformed local counterparts. Then, we analyzed variable importance discrepancies across sites and frameworks. Finally, we explored potential sources of the heterogeneity within the EHR data. The different distributions of demographic profiles, medication use, and site information contributed to data heterogeneity. 
    more » « less
  3. Abstract Objective

    Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved outcomes, reduction of disease burden, and lower healthcare costs. Predictions of a patient’s health trajectory have been improved through the application of machine learning approaches to electronic health records (EHRs). However, these methods have traditionally relied on “black box” algorithms that can process large amounts of data but are unable to incorporate domain knowledge, thus limiting their predictive and explanatory power. Here, we present a method for incorporating domain knowledge into clinical classifications by embedding individual patient data into a biomedical knowledge graph.

    Materials and Methods

    A modified version of the Page rank algorithm was implemented to embed millions of deidentified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional, knowledge-guided patient health signatures (ie, SPOKEsigs) that were subsequently used as features in a random forest environment to classify patients at risk of developing a chronic disease.

    Results

    Our model predicted disease status of 5752 subjects 3 years before being diagnosed with multiple sclerosis (MS) (AUC = 0.83). SPOKEsigs outperformed predictions using EHRs alone, and the biological drivers of the classifiers provided insight into the underpinnings of prodromal MS.

    Conclusion

    Using data from EHR as input, SPOKEsigs describe patients at both the clinical and biological levels. We provide a clinical use case for detecting MS up to 5 years prior to their documented diagnosis in the clinic and illustrate the biological features that distinguish the prodromal MS state.

     
    more » « less
  4. To make daily decisions, human agents devise their own "strategies" governing their mobility dynamics (e.g., taxi drivers have preferred working regions and times, and urban commuters have preferred routes and transit modes). Recent research such as generative adversarial imitation learning (GAIL) demonstrates successes in learning human decision-making strategies from their behavior data using deep neural networks (DNNs), which can accurately mimic how humans behave in various scenarios, e.g., playing video games, etc. However, such DNN-based models are "black box" models in nature, making it hard to explain what knowledge the models have learned from human, and how the models make such decisions, which was not addressed in the literature of imitation learning. This paper addresses this research gap by proposing xGAIL, the first explainable generative adversarial imitation learning framework. The proposed xGAIL framework consists of two novel components, including Spatial Activation Maximization (SpatialAM) and Spatial Randomized Input Sampling Explanation (SpatialRISE), to extract both global and local knowledge from a well-trained GAIL model that explains how a human agent makes decisions. Especially, we take taxi drivers' passenger-seeking strategy as an example to validate the effectiveness of the proposed xGAIL framework. Our analysis on a large-scale real-world taxi trajectory data shows promising results from two aspects: i) global explainable knowledge of what nearby traffic condition impels a taxi driver to choose a particular direction to find the next passenger, and ii) local explainable knowledge of what key (sometimes hidden) factors a taxi driver considers when making a particular decision. 
    more » « less
  5. In many applications, multiple parties have private data regarding the same set of users but on disjoint sets of attributes, and a server wants to leverage the data to train a model. To enable model learning while protecting the privacy of the data subjects, we need vertical federated learning (VFL) techniques, where the data parties share only information for training the model, instead of the private data. However, it is challenging to ensure that the shared information maintains privacy while learning accurate models. To the best of our knowledge, the algorithm proposed in this paper is the first practical solution for differentially private vertical federatedk-means clustering, where the server can obtain a set of global centers with a provable differential privacy guarantee. Our algorithm assumes an untrusted central server that aggregates differentially private local centers and membership encodings from local data parties. It builds a weighted grid as the synopsis of the global dataset based on the received information. Final centers are generated by running anyk-means algorithm on the weighted grid. Our approach for grid weight estimation uses a novel, light-weight, and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin sketch. To improve the estimation accuracy in the setting with more than two data parties, we further propose a refined version of the weights estimation algorithm and a parameter tuning strategy to reduce the finalk-means loss to be close to that in the central private setting. We provide theoretical utility analysis and experimental evaluation results for the cluster centers computed by our algorithm and show that our approach performs better both theoretically and empirically than the two baselines based on existing techniques 
    more » « less