Matrix factorization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond to users and columns correspond to items to be rated, and has been serving as a fundamental building block in recommendation systems. This paper comprehensively studies the problem of matrix factorization in different federated learning (FL) settings, where a set of parties want to cooperate in training but refuse to share data directly. We first propose a generic algorithmic framework for various settings of federated matrix factorization (FMF) and provide a theoretical convergence guarantee. We then systematically characterize privacy-leakage risks in data collection, training, and publishing stages for three different settings and introduce privacy notions to provide end-to-end privacy protections. The first one is vertical federated learning (VFL), where multiple parties have the ratings from the same set of users but on disjoint sets of items. The second one is horizontal federated learning (HFL), where parties have ratings from different sets of users but on the same set of items. The third setting is local federated learning (LFL), where the ratings of the users are only stored on their local devices. We introduce adapted versions of FMF with the privacy notions guaranteed in the three settings. In particular, a new private learning technique called embedding clipping is introduced and used in all the three settings to ensure differential privacy. For the LFL setting, we combine differential privacy with secure aggregation to protect the communication between user devices and the server with a strength similar to the local differential privacy model, but much better accuracy. We perform experiments to demonstrate the effectiveness of our approaches.
more »
« less
Differentially Private Vertical Federated Clustering
In many applications, multiple parties have private data regarding the same set of users but on disjoint sets of attributes, and a server wants to leverage the data to train a model. To enable model learning while protecting the privacy of the data subjects, we need vertical federated learning (VFL) techniques, where the data parties share only information for training the model, instead of the private data. However, it is challenging to ensure that the shared information maintains privacy while learning accurate models. To the best of our knowledge, the algorithm proposed in this paper is the first practical solution for differentially private vertical federatedk-means clustering, where the server can obtain a set of global centers with a provable differential privacy guarantee. Our algorithm assumes an untrusted central server that aggregates differentially private local centers and membership encodings from local data parties. It builds a weighted grid as the synopsis of the global dataset based on the received information. Final centers are generated by running anyk-means algorithm on the weighted grid. Our approach for grid weight estimation uses a novel, light-weight, and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin sketch. To improve the estimation accuracy in the setting with more than two data parties, we further propose a refined version of the weights estimation algorithm and a parameter tuning strategy to reduce the finalk-means loss to be close to that in the central private setting. We provide theoretical utility analysis and experimental evaluation results for the cluster centers computed by our algorithm and show that our approach performs better both theoretically and empirically than the two baselines based on existing techniques
more »
« less
- Award ID(s):
- 2220433
- PAR ID:
- 10467375
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 16
- Issue:
- 6
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 1277 to 1290
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor.more » « less
-
Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.more » « less
-
Federated Learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model while keeping each client's data within its own local systems. This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters. Most federated learning systems therefore use differential privacy to introduce noise to the parameters. This adds uncertainty to any attempt to reveal private client data, but also reduces the accuracy of the shared model, limiting the useful scale of privacy-preserving noise. A system can further reduce the coordinating server's ability to recover private client information, without additional accuracy loss, by also including secure multiparty computation. An approach combining both techniques is especially relevant to financial firms as it allows new possibilities for collaborative learning without exposing sensitive client data. This could produce more accurate models for important tasks like optimal trade execution, credit origination, or fraud detection. The key contributions of this paper are: We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform which we have adapted for the development of federated learning systems.more » « less
-
A large amount of data is often needed to train machine learning algorithms with confidence. One way to achieve the necessary data volume is to share and combine data from multiple parties. On the other hand, how to protect sensitive personal information during data sharing is always a challenge. We focus on data sharing when parties have overlapping attributes but non-overlapping individuals. One approach to achieve privacy protection is through sharing differentially private synthetic data. Each party generates synthetic data at its own preferred privacy budget, which is then released and horizontally merged across the parties. The total privacy cost for this approach is capped at the maximum individual budget employed by a party. We derive the mean squared error bounds for the parameter estimation in common regression analysis based on the merged sanitized data across parties. We identify through theoretical analysis the conditions under which the utility of sharing and merging sanitized data outweighs the perturbation introduced for satisfying differential privacy and surpasses that based on individual party data. The experiments suggest that sanitized HOMM data obtained at a practically reasonable small privacy cost can lead to smaller prediction and estimation errors than individual parties, demonstrating the benefits of data sharing while protecting privacy.more » « less