Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods.
more »
« less
ZenoPS: A Distributed Learning System Integrating Communication Efficiency and Security
Distributed machine learning is primarily motivated by the promise of increased computation power for accelerating training and mitigating privacy concerns. Unlike machine learning on a single device, distributed machine learning requires collaboration and communication among the devices. This creates several new challenges: (1) the heavy communication overhead can be a bottleneck that slows down the training, and (2) the unreliable communication and weaker control over the remote entities make the distributed system vulnerable to systematic failures and malicious attacks. This paper presents a variant of stochastic gradient descent (SGD) with improved communication efficiency and security in distributed environments. Our contributions include (1) a new technique called error reset to adapt both infrequent synchronization and message compression for communication reduction in both synchronous and asynchronous training, (2) new score-based approaches for validating the updates, and (3) integration with both error reset and score-based validation. The proposed system provides communication reduction, both synchronous and asynchronous training, Byzantine tolerance, and local privacy preservation. We evaluate our techniques both theoretically and empirically.
more »
« less
- PAR ID:
- 10387023
- Date Published:
- Journal Name:
- Algorithms
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 1999-4893
- Page Range / eLocation ID:
- 233
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Although the distributed machine learning methods can speed up the training of large deep neural networks, the communication cost has become the non-negligible bottleneck to constrain the performance. To address this challenge, the gradient compression based communication-efficient distributed learning methods were designed to reduce the communication cost, and more recently the local error feedback was incorporated to compensate for the corresponding performance loss. However, in this paper, we will show that a new "gradient mismatch" problem is raised by the local error feedback in centralized distributed training and can lead to degraded performance compared with full-precision training. To solve this critical problem, we propose two novel techniques, 1) step ahead and 2) error averaging, with rigorous theoretical analysis. Both our theoretical and empirical results show that our new methods can handle the "gradient mismatch" problem. The experimental results show that we can even train faster with common gradient compression schemes than both the full-precision training and local error feedback regarding the training epochs and without performance loss.more » « less
-
Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, its convergence speed and model accuracy can be compromised. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the paper introduces a semi-synchronous FL framework that uses client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Building on this, the paper proposes the Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning (DecantFed) algorithm to dynamically optimize client clustering, bandwidth allocation, and local training workloads in order to maximize data sample processing rates in FL. DecantFed dynamically optimizes client clustering, bandwidth allocation, and local training workloads for maximizing data processing rates in FL. It also adapts client learning rates according to their tiers, thus addressing the model staleness issue. Extensive simulations using benchmark datasets like MNIST and CIFAR-10, under both IID and non-IID scenarios, demonstrate DecantFed’s superior performance. It outperforms FedAvg and FedProx in convergence speed and delivers at least a 28% improvement in model accuracy, compared to FedProx.more » « less
-
With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners or the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.more » « less
-
Large-scale machine learning training, in particular, distributed stochastic gradient descent, needs to be robust to inherent system variability such as node straggling and random communication delays. This work considers a distributed training framework where each worker node is allowed to perform local model updates and the resulting models are averaged periodically. We analyze the true speed of error convergence with respect to wall-clock time (instead of the number of iterations) and analyze how it is affected by the frequency of averaging. The main contribution is the design of ADACOMM, an adaptive communication strategy that starts with infrequent averaging to save communication delay and improve convergence speed, and then increases the communication frequency in order to achieve a low error floor. Rigorous experiments on training deep neural networks show that ADACOMM can take 3x less time than fully synchronous SGD and still reach the same final training loss.more » « less