skip to main content


Title: Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope
The anaerobic gut fungi (AGF; phylum Neocallimastigomycota ) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from faecal samples of a wild blackbuck (Indian Antelope, Antilope cervicapra ) from Sutton County, Texas, USA. The isolates displayed medium sized (2–4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D1/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5 and 81.3%, respectively, to the closest cultured relatives ( Orpinomyces joyonii strain D3A (D1/D2 LSU) and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3 T ) demonstrated growth capabilities on a wide range of mono-, oligo- and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus gen. nov., sp. nov. is proposed.  more » « less
Award ID(s):
2029478
NSF-PAR ID:
10299057
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Systematic and Evolutionary Microbiology
Volume:
71
Issue:
6
ISSN:
1466-5026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tracts of herbivores where they play a central role in the breakdown of plant material. Here, we report on the development of the hypervariable domains D1/D2 of the large ribosomal subunit (D1/D2 LSU) as a barcoding marker for the AGF. We generated a reference D1/D2 LSU database for all cultured AGF genera, as well as the majority of candidate genera encountered in prior internal transcribed spacer 1 (ITS1)‐based surveys. Subsequently, a D1/D2 LSU‐based diversity survey using long read PacBio SMRT sequencing was conducted on faecal samples from 21 wild and domesticated herbivores. Twenty‐eight genera and candidate genera were identified, including multiple novel lineages that were predominantly, but not exclusively, identified in wild herbivores. Association between certain AGF genera and animal lifestyles, or animal host family was observed. Finally, to address the current paucity of AGF isolates, concurrent isolation efforts utilizing multiple approaches to maximize recovery yielded 216 isolates belonging to 12 different genera, several of which have no prior cultured‐representatives. Our results establish the utility of D1/D2 LSU and PacBio sequencing for AGF diversity surveys, the culturability of multiple AGF taxa, and demonstrate that wild herbivores represent a yet‐untapped reservoir of AGF diversity.

     
    more » « less
  2. The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21  % (clade T), and 61.24–64.83  % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus).

     
    more » « less
  3. The anaerobic gut fungi (AGF) represent a coherent phylogenetic clade within the Mycota. Twenty genera have been described so far. Currently, the phylogenetic and evolutionary relationships between AGF genera remain poorly understood. Here, we utilized 52 transcriptomic datasets from 14 genera to resolve AGF inter-genus relationships using phylogenomics, and to provide a quantitative estimate (amino acid identity, AAI) for intermediate rank assignments. We identify four distinct supra-genus clades, encompassing all genera producing polyflagellated zoospores, bulbous rhizoids, the broadly circumscribed genus Piromyces, and the Anaeromyces and affiliated genera. We also identify the genus Khoyollomyces as the earliest evolving AGF genus. Concordance between phylogenomic outputs and RPB1 and D1/D2 LSU, but not RPB2, MCM7, EF1α, or ITS1, phylogenies was observed. We combine phylogenomic analysis, and AAI outputs with informative phenotypic traits to propose accommodating 14/20 AGF genera into four families: Caecomycetaceae fam. nov. (encompassing the genera Caecomyces and Cyllamyces), Piromycetaceae fam. nov. (encompassing the genus Piromyces), emend the description of fam. Neocallimastigaceae to encompass the genera Neocallimastix, Orpinomyces, Pecoramyces, Feramyces, Ghazallomyces, Aestipascuomyces, and Paucimyces, as well as the family Anaeromycetaceae to include the genera Oontomyces, Liebetanzomyces, and Capellomyces in addition to Anaeromyces. We refrain from proposing families for the deeply branching genus Khoyollomyces, and for genera with uncertain position (Buwchfawromyces, Joblinomyces, Tahromyces, Agriosomyces, and Aklioshbomyces) pending availability of additional isolates and sequence data; and these genera are designated as “genera incertae sedis” in the order Neocallimastigales. Our results establish an evolutionary-grounded Linnaean taxonomic framework for the AGF, provide quantitative estimates for rank assignments, and demonstrate the utility of RPB1 as an additional informative marker in Neocallimastigomycota taxonomy. 
    more » « less
  4. Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1 T and HH3 T represent novel species belonging to the genus Thiomicrorhabdus . The genome G+C fraction of HH1 T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3 T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C 16 : 1 , C 18 : 1 and C 16 : 0 , with the addition of C 10:0 3-OH in HH1 T and C 12 : 0 in HH3 T . Chemolithoautotrophic growth of both strains was supported by elemental sulphur, sulphide, tetrathionate, and thiosulphate, and HH1 T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1 T grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas strain HH3 T grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15–35 °C with optima of 32.8 °C for HH1 T and 32 °C for HH3 T . HH1 T grew in media with [NaCl] 80–689 mM, with an optimum of 400 mM, while HH3 T grew at 80–517 mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is HH1 T (=DSM 111584 T =ATCC TSD-240 T ). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3 T (=DSM 111593 T =ATCC TSD-241 T ). 
    more » « less
  5. null (Ed.)
    ABSTRACT Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, β-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites. 
    more » « less