skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Saccharomycopsis praedatoria sp. nov., a predacious yeast isolated from soil and rotten wood in an Amazonian rainforest biome
Three yeast isolates were obtained from soil and rotting wood samples collected in an Amazonian rainforest biome in Brazil. Comparison of the intergenic spacer 5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of the genusSaccharomycopsis. A tree inferred from the D1/D2 sequences placed the novel species near a subclade containingSaccharomycopsis lassenensis,Saccharomycopsis fermentans,Saccharomycopsis javanensis,Saccharomycopsis babjevae,Saccharomycopsis schoeniiandSaccharomycopsis oosterbeekiorum, but with low bootstrap support. In terms of sequence divergence, the novel species had the highest identity in the D1/D2 domains withSaccharomycopsis capsularis, from which it differed by 36 substitutions. In contrast, a phylogenomic analysis based on 1061 single-copy orthologs for a smaller set ofSaccharomycopsisspecies whose whole genome sequences are available indicated that the novel species represented by strain UFMG-CM-Y6991 is phylogenetically closer toSaccharomycopsis fodiensandSaccharomycopsissp. TF2021a (=Saccharomycopsis phalluae). The novel yeast is homothallic and produces asci with one spheroidal ascospore with an equatorial or subequatorial ledge. The nameSaccharomycopsis praedatoriasp. nov. is proposed to accommodate the novel species. The holotype ofSaccharomycopsis praedatoriais CBS 16589T. The MycoBank number is MB849369.S. praedatoriawas able to kill cells ofSaccharomyces cerevisiaeby means of penetration with infection pegs, a trait common to most species ofSaccharomycopsis.  more » « less
Award ID(s):
2110403
PAR ID:
10515802
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Microbiology Society
Date Published:
Journal Name:
International Journal of Systematic and Evolutionary Microbiology
Volume:
73
Issue:
10
ISSN:
1466-5026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Five yeast isolates belonging to a candidate for novel species were obtained from rotting wood and the gut of a passalid beetle larva in a site of Amazonian rainforest biome in Brazil. Sequence analysis of the Internal Transcribed Spacer (ITS)-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of the genusVanderwaltozyma. The closest relative of the novel species isVanderwaltozyma huisunica. These species differs due to 44 nt substitutions and 21 indels in the sequences of the ITS region, as well as by 15 substitutions and four indels in the sequences of the D1/D2 domains. A phylogenomic analysis of theVanderwaltozymaspecies with genomes sequenced showed that this novel species is an outgroup to the other species of this genus. We propose the nameVanderwaltozyma urihicolasp. nov. (CBS 18107T, MycoBank MB 856975) to accommodate these isolates. The species is homothallic, producing one to two ascospores per ascus. The habitat ofV. urihicolais rotting wood in the Brazilian Amazonian rainforest biome. 
    more » « less
  2. null (Ed.)
    The anaerobic gut fungi (AGF; phylum Neocallimastigomycota ) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from faecal samples of a wild blackbuck (Indian Antelope, Antilope cervicapra ) from Sutton County, Texas, USA. The isolates displayed medium sized (2–4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D1/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5 and 81.3%, respectively, to the closest cultured relatives ( Orpinomyces joyonii strain D3A (D1/D2 LSU) and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3 T ) demonstrated growth capabilities on a wide range of mono-, oligo- and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus gen. nov., sp. nov. is proposed. 
    more » « less
  3. The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21  % (clade T), and 61.24–64.83  % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus). 
    more » « less
  4. We report on the isolation and characterization of three isolates of anaerobic gut fungi from a cattle faecal sample obtained in Stillwater, OK, USA. The isolates produced polycentric thalli with nucleated rhizomycelia, lobed appressorium-like structures, intercalary sporangia and constricted sausage-like hyphae. These morphological features are characteristic of members of the genusAnaeromyces. No zoospore production was observed during the isolation process or thereafter. The strains seemed to have propagated solely through their nucleated hyphae post initial enrichment. Phylogenetic analysis of the D1/D2 region of the large ribosomal subunit (D1/D2 LSU) rRNA, the ribosomal intergenic spacer region 1 (ITS1), RNA polymerase II large subunit (RPB1) and comparative average amino acid identity using transcriptomic datasets further confirmed the position of the type strain as a distinct member of the genusAnaeromyces, familyAnaeromycetaceaeand phylumNeocallimastigomycota. We propose to accommodate these isolates into a new species (Anaeromyces corallioides) within the genusAnaeromyces. The type strain is EE.1. 
    more » « less
  5. Abstract Anaerobic gut fungi (AGF,Neocallimastigomycota) represent a phylum of zoospore-producing fungi inhabiting the gastrointestinal tracts of herbivores. Twenty mammalian-affiliated genera (M-AGF) and two tortoise-affiliated genera (T-AGF) have been described so far. Here, we report on three additional novel T-AGF isolates obtained from Texas and sulcata tortoises. Phylogenetic analysis using the D1-D2 regions of the large ribosomal RNA subunit (D1-D2 LSU), RNA polymerase II large subunit (RPB1), internal transcribed spacer-1 region (ITS1), and transcriptomics-enabled phylogenomic analysis clustered these strains into three distinct, deep-branching clades, closely related to previously described T-AGF genusTestudinimyces. All isolates displayed filamentous rhizoidal growth patterns and produced monoflagellated zoospores. Unique morphological characteristics included the production of elongated, thick, nucleated structures in GX isolates, the formation of thin hair-like projections on sporangial walls in SR isolates, and irregularly shaped sporangia in TM isolates. All strains grew optimally at 32-35 °C and showed distinct substrate utilization capacity (e.g., growth on pectin, chitin, galactose). LSU analyses revealed GX isolates as the first cultured representatives of tortoise-affiliated but previously uncultured lineage NY56, while SR and TM strains have not been encountered in prior culture-independent AGF surveys. We propose to accommodate these isolates in three new genera and species –Gopheromyces tardescens(GXA2),Gigasporangiomyces pilosus(SR0.6), andKelyphomyces adhaerens(TM0.3). Further, based on the ecological, physiological, and phylogenetic distinctions between T-AGF and M-AGF, we propose to establish a new family (Testudinimycetaceae) to accommodate the generaTestudinimyces, Gopheromyces,Gigasporangiomyces,andKelyphomyces, within a new order (Testudinimycetales), and amend the description ofNeocallimastigalesto circumscribe M-AGF genera only. 
    more » « less