skip to main content


Title: Observations of Earth’s Normal Modes on Broadband Ocean Bottom Seismometers
It is generally thought that high noise levels in the oceans inhibit the observation of long-period earthquake signals such as Earth’s normal modes on ocean bottom seismometers (OBSs). Here, we document the observation of Earth’s gravest modes at periods longer than 500 s (or frequencies below 2 mHz). We start with our own 2005–2007 Plume-Lithosphere-Undersea-Mantle Experiment (PLUME) near Hawaii that deployed a large number of broadband OBSs for the first time. We collected high-quality normal mode spectra for the great November 15, 2006 Kuril Islands earthquake on multiple OBSs. The random deployment of instruments from different OBS groups allows a direct comparison between different broadband seismometers. For this event, mode S 0 6 (1.038 mHz) consistently rises above the background noise at all OBSs that had a Nanometrics Trillium T-240 broadband seismometer. We also report observations of other deployments in the Pacific ocean that involved instruments of the U.S. OBS Instrument Pool (OBSIP) where we observe even mode S 0 4 (0.647 mHz). Earth’s normal modes were never the initial target of any OBS deployment, nor was any other ultra-low-frequency signal. However, given the high costs of an OBS campaign, the fact that data are openly available to future investigators not involved in the campaign, and the fact that seismology is evolving to investigate ever-new signals, this paper makes the case that the investment in a high-quality seismic sensor may be a wise one, even for a free-fall OBS.  more » « less
Award ID(s):
1830959
NSF-PAR ID:
10299094
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
9
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700  km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262  m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories. 
    more » « less
  2. Earth's normal modes are fundamental observations used in global seismic tomography to understand Earth structure. Land seismic station coverage is sufficient to constrain the broadest scale Earth structures. However, 70% of Earth's surface is covered by the oceans, hampering our ability to observe variations in local mode frequencies that contribute to imaging small-scale structures. Broadband ocean bottom seismometers can record spheroidal modes to fill in gaps in global data coverage. Ocean bottom recordings are contaminated by signals from complex interactions between ocean and solid Earth dynamics at normal mode frequencies. We present a method for correcting tilt on broadband ocean bottom seismometers by rotation. The correction improves the ability of some instruments to observe spheroidal modes down to 0S4. We demonstrate this method using 15 broadband ocean bottom seismometers from the PI-LAB array. We measure normal mode peak frequency shifts and compare with 1-D reference mode frequencies and predictions from 3-D global models. Our measurements agree with the 3-D models for modes between 0S14 - 0S37 with small but significant differences. These differences likely reflect real Earth structure. This suggests incorporating ocean bottom normal mode measurements into global inversions will improve models of global seismic velocity structure. 
    more » « less
  3. Abstract

    Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.

     
    more » « less
  4. Abstract

    Earthquakes near oceanic trenches are important for studying incoming plate bending and updip thrust zone seismogenesis, yet are poorly constrained using seismographs on land. We use an ocean bottom seismograph (OBS) deployment spanning both the incoming Pacific Plate and the forearc to study seismicity near the Mariana Trench. The yearlong deployment in 2012–2013 consisted of 20 broadband OBSs and 5 suspended hydrophones, with an additional 59 short period OBSs and hydrophones recording for 1 month. We locate 1,692 earthquakes using a nonlinear method with a 3D velocity model constructed from active source profiles and surface wave tomography results. Events occurring seaward of the trench occur to depths of ~35 km below the seafloor, and focal mechanisms of the larger events indicate normal faulting corresponding to plate bending. Significant seismicity emerges about 70 km seaward from the trench, and the seismicity rate increases continuously towards the trench, indicating that the largest bending deformation occurs near the trench axis. These plate‐bending earthquakes occur along faults that facilitate the hydration of the subducting plate, and the lateral and depth distribution of earthquakes is consistent with low‐velocity regions imaged in previous studies. The forearc is marked by a heterogeneous distribution of low magnitude (<5 Mw) thrust zone seismicity, possibly due to the rough incoming plate topography and/or serpentinization of the forearc. A sequence of thrust earthquakes occurs at depths ~10 km below seafloor and within 20 km of the trench axis, demonstrating that the megathrust is seismically active nearly to the trench.

     
    more » « less
  5. null (Ed.)
    Abstract The erroneous flipping of polarity in seismic records of ocean-bottom seismometers (OBSs) could go unnoticed and undiagnosed because it is coupled with unknown horizontal orientation of OBS instruments on the seafloor. In this study, we present detailed approaches to first identify potential errors in the flipping polarity of individual OBS instruments, and then determine the correct orientation of OBS instruments on the seafloor. We first conduct a series of tests by artificially flipping the polarity of seismic records of the Global Seismographic Network stations to determine the effects on orientation estimates, utilizing polarization characteristics of teleseismic P and Rayleigh waves, respectively. The tests demonstrate that erroneous polarity reversal in seismic recording could cause false estimates and reverse radial (R) and tangential (T) components. We determine the sensor orientations through comparing the observed waveforms to the synthetic waveforms, which could solve the ambiguity of R and T directions caused by potential erroneous polarity reversal of OBS data. We then apply the approaches to an OBS data set collected in the southern Mariana subduction zone to obtain the correct orientation for 9 out of 12 OBS instruments. 
    more » « less