skip to main content


Title: Regularizing Neural Networks via Minimizing Hyperspherical Energy
Inspired by the Thomson problem in physics where the distribution of multiple propelling electrons on a unit sphere can be modeled via minimizing some potential energy, hyperspherical energy minimization has demonstrated its potential in regularizing neural networks and improving their generalization power. In this paper, we first study the important role that hyperspherical energy plays in neural network training by analyzing its training dynamics. Then we show that naively minimizing hyperspherical energy suffers from some difficulties due to highly non-linear and non-convex optimization as the space dimensionality becomes higher, therefore limiting the potential to further improve the generalization. To address these problems, we propose the compressive minimum hyperspherical energy (CoMHE) as a more effective regularization for neural networks. Specifically, CoMHE utilizes projection mappings to reduce the dimensionality of neurons and minimizes their hyperspherical energy. According to different designs for the projection mapping, we propose several distinct yet well-performing variants and provide some theoretical guarantees to justify their effectiveness. Our experiments show that CoMHE consistently outperforms existing regularization methods, and can be easily applied to different neural networks.  more » « less
Award ID(s):
1838200
NSF-PAR ID:
10299126
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Page Range / eLocation ID:
6917-6927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inspired by the Thomson problem in physics where the distribution of multiple propelling electrons on a unit sphere can be modeled via minimizing some potential energy, hyperspherical energy minimization has demonstrated its potential in regularizing neural networks and improving their generalization power. In this paper, we first study the important role that hyperspherical energy plays in neural network training by analyzing its training dynamics. Then we show that naively minimizing hyperspherical energy suffers from some difficulties due to highly non-linear and non-convex optimization as the space dimensionality becomes higher, therefore limiting the potential to further improve the generalization. To address these problems, we propose the compressive minimum hyperspherical energy (CoMHE) as a more effective regularization for neural networks. Specifically, CoMHE utilizes projection mappings to reduce the dimensionality of neurons and minimizes their hyperspherical energy. According to different designs for the projection mapping, we propose several distinct yet well-performing variants and provide some theoretical guarantees to justify their effectiveness. Our experiments show that CoMHE consistently outperforms existing regularization methods, and can be easily applied to different neural networks. 
    more » « less
  2. Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10% 
    more » « less
  3. State-of-the-art neural network architectures continue to scale in size and deliver impressive generalization results, although this comes at the expense of limited interpretability. In particular, a key challenge is to determine when to stop training the model, as this has a significant impact on generalization. Convolutional neural networks (ConvNets) comprise high-dimensional feature spaces formed by the aggregation of multiple channels, where analyzing intermediate data representations and the model's evolution can be challenging owing to the curse of dimensionality. We present channel-wise DeepNNK (CW-DeepNNK), a novel channel-wise generalization estimate based on non-negative kernel regression (NNK) graphs with which we perform local polytope interpolation on low-dimensional channels. This method leads to instance-based interpretability of both the learned data representations and the relationship between channels. Motivated by our observations, we use CW-DeepNNK to propose a novel early stopping criterion that (i) does not require a validation set, (ii) is based on a task performance metric, and (iii) allows stopping to be reached at different points for each channel. Our experiments demonstrate that our proposed method has advantages as compared to the standard criterion based on validation set performance. 
    more » « less
  4. Generative neural conversational systems are typically trained by minimizing the entropy loss between the training “hard” targets and the predicted logits. Performance gains and improved generalization are often achieved by employing regularization techniques like label smoothing, which converts the training “hard” targets to soft targets. However, label smoothing enforces a data independent uniform distribution on the incorrect training targets, leading to a false assumption of equiprobability. In this paper, we propose and experiment with incorporating data-dependent word similarity-based weighing methods to transform the uniform distribution of the incorrect target probabilities in label smoothing to a more realistic distribution based on semantics. We introduce hyperparameters to control the incorrect target distribution and report significant performance gains over networks trained using standard label smoothing-based loss on two standard open-domain dialogue corpora. 
    more » « less
  5. Is overparameterization a privacy liability? In this work, we study the effect that the number of parameters has on a classifier's vulnerability to membership inference attacks. We first demonstrate how the number of parameters of a model can induce a privacy--utility trade-off: increasing the number of parameters generally improves generalization performance at the expense of lower privacy. However, remarkably, we then show that if coupled with proper regularization, increasing the number of parameters of a model can actually simultaneously increase both its privacy and performance, thereby eliminating the privacy--utility trade-off. Theoretically, we demonstrate this curious phenomenon for logistic regression with ridge regularization in a bi-level feature ensemble setting. Pursuant to our theoretical exploration, we develop a novel leave-one-out analysis tool to precisely characterize the vulnerability of a linear classifier to the optimal membership inference attack. We empirically exhibit this "blessing of dimensionality" for neural networks on a variety of tasks using early stopping as the regularizer. 
    more » « less