We develop a variational framework to understand the properties of the functions learned by neural networks fit to data. We propose and study a family of continuous-domain linear inverse problems with total variation-like regularization in the Radon domain subject to data fitting constraints. We derive a representer theorem showing that finite-width, singlehidden layer neural networks are solutions to these inverse problems. We draw on many techniques from variational spline theory and so we propose the notion of polynomial ridge splines, which correspond to single-hidden layer neural networks with truncated power functions as the activation function. The representer theorem is reminiscent of the classical reproducing kernel Hilbert space representer theorem, but we show that the neural network problem is posed over a non-Hilbertian Banach space. While the learning problems are posed in the continuous-domain, similar to kernel methods, the problems can be recast as finite-dimensional neural network training problems. These neural network training problems have regularizers which are related to the well-known weight decay and path-norm regularizers. Thus, our result gives insight into functional characteristics of trained neural networks and also into the design neural network regularizers. We also show that these regularizers promote neural network solutions with desirable generalization properties. Keywords: neural networks, splines, inverse problems, regularization, sparsity
more »
« less
Function-Space Regularization in Neural Networks
Parameter-space regularization in neural network optimization is a fundamental tool for improving generalization. However, standard parameter-space regularization methods make it challenging to encode explicit preferences about desired predictive functions into neural network training. In this work, we approach regularization in neural networks from a probabilistic perspective and show that by viewing parameter-space regularization as specifying an empirical prior distribution over the model parameters, we can derive a probabilistically well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training. This method—which we refer to as function-space empirical Bayes (FS-EB)—includes both parameter- and function-space regularization, is mathematically simple, easy to implement, and incurs only minimal computational overhead compared to standard regularization techniques. We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection, highly-calibrated predictive uncertainty estimates, successful task adaption from pre-trained models, and improved generalization under covariate shift.
more »
« less
- Award ID(s):
- 1951856
- PAR ID:
- 10477545
- Publisher / Repository:
- International Conference on Machine Learning
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mixup is a popular regularization technique for training deep neural networks that improves generalization and increases robustness to certain distribution shifts. It perturbs input training data in the direction of other randomly-chosen instances in the training set. To better leverage the structure of the data, we extend mixup in a simple, broadly applicable way to k-mixup, which perturbs k-batches of training points in the direction of other k-batches. The perturbation is done with displacement interpolation, i.e. interpolation under the Wasserstein metric. We demonstrate theoretically and in simulations that k-mixup preserves cluster and manifold structures, and we extend theory studying the efficacy of standard mixup to the k-mixup case. Our empirical results show that training with k-mixup further improves generalization and robustness across several network architectures and benchmark datasets of differing modalities. For the wide variety of real datasets considered, the performance gains of k-mixup over standard mixup are similar to or larger than the gains of mixup itself over standard ERM after hyperparameter optimization. In several instances, in fact, k-mixup achieves gains in settings where standard mixup has negligible to zero improvement over ERM.more » « less
-
The training of over-parameterized neural networks has received much study in recent literature. An important consideration is the regularization of over-parameterized networks due to their highly nonconvex and nonlinear geometry. In this paper, we study noise injection algorithms, which can regularize the Hessian of the loss, leading to regions with flat loss surfaces. Specifically, by injecting isotropic Gaussian noise into the weight matrices of a neural network, we can obtain an approximately unbiased estimate of the trace of the Hessian. However, naively implementing the noise injection via adding noise to the weight matrices before backpropagation presents limited empirical improvements. To address this limitation, we design a two-point estimate of the Hessian penalty, which injects noise into the weight matrices along both positive and negative directions of the random noise. In particular, this two-point estimate eliminates the variance of the first-order Taylor's expansion term on the Hessian. We show a PAC-Bayes generalization bound that depends on the trace of the Hessian (and the radius of the weight space), which can be measured from data. We conduct a detailed experimental study to validate our approach and show that it can effectively regularize the Hessian and improve generalization. First, our algorithm can outperform prior approaches on sharpness-reduced training, delivering up to a 2.4% test accuracy increase for fine-tuning ResNets on six image classification datasets. Moreover, the trace of the Hessian reduces by 15.8%, and the largest eigenvalue is reduced by 9.7% with our approach. We also find that the regularization of the Hessian can be combined with alternative regularization methods, such as weight decay and data augmentation, leading to stronger regularization. Second, our approach remains highly effective for improving generalization in pretraining multimodal CLIP models and chain-of-thought fine-tuning.more » « less
-
We argue that the optimization plays a crucial role in generalization of deep learning models through implicit regularization. We do this by demonstrating that generalization ability is not controlled by network size but rather by some other implicit control. We then demonstrate how changing the empirical optimization procedure can improve generalization, even if actual optimization quality is not affected. We do so by studying the geometry of the parameter space of deep networks, and devising an optimization algorithm attuned to this geometry.more » « less
-
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the network weights. This minimization corresponds to the common approach of training a neural network with weight decay. We quantify the performance (mean-squared error) of these neural network estimators when the data-generating function belongs to the second-order Radon-domain bounded variation space. This space of functions was recently proposed as the natural function space associated with shallow ReLU neural networks. We derive a minimax lower bound for the estimation problem for this function space and show that the neural network estimators are minimax optimal up to logarithmic factors. This minimax rate is immune to the curse of dimensionality. We quantify an explicit gap between neural networks and linear methods (which include kernel methods) by deriving a linear minimax lower bound for the estimation problem, showing that linear methods necessarily suffer the curse of dimensionality in this function space. As a result, this paper sheds light on the phenomenon that neural networks seem to break the curse of dimensionality.more » « less
An official website of the United States government

