skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme
Award ID(s):
1720212
PAR ID:
10299203
Author(s) / Creator(s):
Date Published:
Journal Name:
Computer methods in applied mechanics and engineering
Volume:
375
ISSN:
1879-2138
Page Range / eLocation ID:
113600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.

     
    more » « less