We study generating abstractive summaries that are faithful and factually consistent with the given articles. A novel contrastive learning formulation is presented, which leverages both reference summaries, as positive training data, and automatically generated erroneous summaries, as negative training data, to train summarization systems that are better at distinguishing between them. We further design four types of strategies for creating negative samples, to resemble errors made commonly by two state-of-the-art models, BART and PEGASUS, found in our new human annotations of summary errors. Experiments on XSum and CNN/Daily Mail show that our contrastive learning framework is robust across datasets and models. It consistently produces more factual summaries than strong comparisons with post error correction, entailmentbased reranking, and unlikelihood training, according to QA-based factuality evaluation. Human judges echo the observation and find that our model summaries correct more errors.
more »
« less
Automated Pyramid Summarization Evaluation
Pyramid evaluation was developed to assess the content of paragraph length summaries of source texts. A pyramid lists the distinct units of content found in several reference summaries, weights content units by how many reference summaries they occur in, and produces three scores based on the weighted content of new summaries. We present an automated method that is more efficient, more transparent, and more complete than previous automated pyramid methods. It is tested on a new dataset of student summaries, and historical NIST data from extractive summarizers.
more »
« less
- Award ID(s):
- 1847842
- NSF-PAR ID:
- 10299254
- Date Published:
- Journal Name:
- Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
- Page Range / eLocation ID:
- 404 to 418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent work has shown that large language models (LLMs) are capable of generating summaries zero-shot—i.e., without explicit supervision—that, under human assessment, are often comparable or even preferred to manually composed reference summaries. However, this prior work has focussed almost exclusively on evaluating news article summarization. How do zero-shot summarizers perform in other (potentially more specialized) domains?In this work we evaluate zero-shot generated summaries across specialized domains including: biomedical articles, and legal bills (in addition to standard news benchmarks for reference). We focus especially on the factuality of outputs. We acquire annotations from domain experts to identify inconsistencies in summaries and systematically categorize these errors. We analyze whether the prevalence of a given domain in the pretraining corpus affects extractiveness and faithfulness of generated summaries of articles in this domain. We release all collected annotations to facilitate additional research toward measuring and realizing factually accurate summarization, beyond news articles (The dataset can be downloaded from https://anonymous.4open.science/r/zero_shot_faceval_domains-9B83)more » « less
-
Abstractive summarization models often generate inconsistent summaries containing factual errors or hallucinated content. Recent works focus on correcting factual errors in generated summaries via post-editing. Such correction models are trained using adversarial non-factual summaries constructed using heuristic rules for injecting errors. However, generating non-factual summaries using heuristics often does not generalize well to actual model errors. In this work, we propose to generate hard, representative synthetic examples of non-factual summaries through infilling language models. With this data, we train a more robust fact-correction model to post-edit the summaries to improve factual consistency. Through quantitative and qualitative experiments on two popular summarization datasets— CNN/DM and XSum—we show that our approach vastly outperforms prior methods in correcting erroneous summaries. Our model—FactEdit—improves factuality scores by over ~11 points on CNN/DM and over ~31 points on XSum on average across multiple summarization models, producing more factual summaries while maintaining competitive summarization quality.more » « less
-
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplification does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing “jargon” terms; we find that this yields improvements over baselines in terms of readability.more » « less
-
Document structure is critical for efficient information consumption. However, it is challenging to encode it efficiently into the modern Transformer architecture. In this work, we present HIBRIDS, which injects Hierarchical Biases foR Incorporating Document Structure into the calculation of attention scores. We further present a new task, hierarchical question-summary generation, for summarizing salient content in the source document into a hierarchy of questions and summaries, where each follow-up question inquires about the content of its parent question-summary pair. We also annotate a new dataset with 6, 153 question-summary hierarchies labeled on long government reports. Experiment results show that our model produces better question-summary hierarchies than comparisons on both hierarchy quality and content coverage, a finding also echoed by human judges. Additionally, our model improves the generation of long-form summaries from lengthy government reports and Wikipedia articles, as measured by ROUGE scores.more » « less