Constructing of highly porous thermoelectric structures with improved thermoelectric performance
- Award ID(s):
- 1905037
- PAR ID:
- 10299264
- Date Published:
- Journal Name:
- Nano Research
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 1998-0124
- Page Range / eLocation ID:
- 3608 to 3615
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Inspired by the “run-and-tumble” behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.more » « less
-
Abstract Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques.more » « less
-
Abstract Zintl phase thermoelectric materials have generated tremendous interest due to possessing structural features conducive to high thermoelectric performances. On the other hand, both arsenic and arsenic‐based compounds have become attractive in electronics due to having interesting properties like narrow bandgap, tunable carrier concentration, and non‐centrosymmetric structures. The structure of arsenic compounds plays a telling role in determining their efficiency as thermoelectric materials. They also show the scope to be doped as both p‐ and n‐type conduction providing exciting new materials with applications as a full module. These attributes make them appealing as thermoelectric materials for further research. This short review is an overview of the different structures of arsenic‐based Zintl ternary materials that have potential to be excellent thermoelectric materials.more » « less
An official website of the United States government

