K-means clustering is a widely used machine learning method for identifying patterns in large datasets. Recently, semidefinite programming (SDP) relaxations have been proposed for solving the K-means optimization problem, which enjoy strong statistical optimality guarantees. However, the prohibitive cost of implementing an SDP solver renders these guarantees inaccessible to practical datasets. In contrast, nonnegative matrix factorization (NMF) is a simple clustering algorithm widely used by machine learning practitioners, but it lacks a solid statistical underpinning and theoretical guarantees. In this paper, we consider an NMF-like algorithm that solves a nonnegative low-rank restriction of the SDP-relaxed K-means formulation using a nonconvex Burer--Monteiro factorization approach. The resulting algorithm is as simple and scalable as state-of-the-art NMF algorithms while also enjoying the same strong statistical optimality guarantees as the SDP. In our experiments, we observe that our algorithm achieves significantly smaller mis-clustering errors compared to the existing state-of-the-art while maintaining scalability.
more »
« less
Approximation Algorithms for Orthogonal Non-negative Matrix Factorization
In the non-negative matrix factorization (NMF) problem, the input is an m×n matrix M with non-negative entries and the goal is to factorize it as M ≈ AW. The m × k matrix A and the k × n matrix W are both constrained to have non-negative entries. This is in contrast to singular value decomposition, where the matrices A and W can have negative entries but must satisfy the orthogonality constraint: the columns of A are orthogonal and the rows of W are also orthogonal. The orthogonal non-negative matrix factorization (ONMF) problem imposes both the non-negativity and the orthogonality constraints, and previous work showed that it leads to better performances than NMF on many clustering tasks. We give the first constant-factor approximation algorithm for ONMF when one or both of A and W are subject to the orthogonality constraint. We also show an interesting connection to the correlation clustering problem on bipartite graphs. Our experiments on synthetic and real-world data show that our algorithm achieves similar or smaller errors compared to previous ONMF algorithms while ensuring perfect orthogonality (many previous algorithms do not satisfy the hard orthogonality constraint).
more »
« less
- Award ID(s):
- 1908774
- PAR ID:
- 10299301
- Date Published:
- Journal Name:
- Proeedings of the International Workshop on Artificial Intelligence and Statistics
- Volume:
- 130
- ISSN:
- 1525-531X
- Page Range / eLocation ID:
- 2728-2736
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Non-negative matrix factorization (NMF), the problem of finding two non-negative low-rank factors whose product approximates an input matrix, is a useful tool for many data mining and scientific applications such as topic modeling in text mining and unmixing in microscopy. In this paper, we focus on scaling algorithms for NMF to very large sparse datasets and massively parallel machines by employing effective algorithms, communication patterns, and partitioning schemes that leverage the sparsity of the input matrix. We consider two previous works developed for related problems,one that uses a fine-grained partitioning strategy using a point-to-point communication pattern and one that uses a Cartesian, or checkerboard, partitioning strategy using a collective-based communication pattern. We show that a combination of the previous approaches balances the demands of the various computations within NMF algorithms and achieves high efficiency and scalability. From the experiments, we see that our proposed strategy runs up to 10x faster than the state of the art on real-world datasets.more » « less
-
null (Ed.)Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clustering applications. From movie recommendations and image clustering to visual feature extractions, NMF has applications to solve a large number of knowledge discovery and data mining problems. Traditional optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed. To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a solution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the objective and matrix factors converge. In addition, we show the relationship between MUA and our solution followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets validate the correctness of our proposed method and its utility as an effective clustering algorithm.more » « less
-
QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $$A \in \Z^{m \times n}$$ as $A=QDR$, where $$Q \in \Z^{m \times m}$$ has pairwise orthogonal columns, $$D$$ is a diagonal matrix, and $$R \in \Z^{m \times n}$$ is an upper trapezoidal matrix; notably, the entries of $$Q$$ and $$R$$ are integral, while the entries of $$D$$ are reciprocals of integers. In the thin REF QR factorization, $$Q \in \Z^{m \times n}$$ also has pairwise orthogonal columns, and $$R \in \Z^{n \times n}$$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $$x$$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix).more » « less
-
We analyzed the essays that were written on various topics in an introductory physics course using two unsupervised machine learning algorithms. One of them was Latent Dirichlet Allocation (LDA). This algorithm is used for extracting abstract topics from a collection of text documents. The other algorithm was Non-negative Matrix Factorization (NMF). It is used for similar purposes but also in other domains such as image recognition. We applied these two algorithms to the dataset that consisted of N=683 student essays. Although there were some built-in, important differences between LDA and NMF, they both found similar topics in our data by large. This offers instructors a promising and productive way of accessing useful information about their students' written work, especially in large-enrollment classes.more » « less
An official website of the United States government

