skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact QR Factorizations of Rectangular Matrices
QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $$A \in \Z^{m \times n}$$ as $A=QDR$, where $$Q \in \Z^{m \times m}$$ has pairwise orthogonal columns, $$D$$ is a diagonal matrix, and $$R \in \Z^{m \times n}$$ is an upper trapezoidal matrix; notably, the entries of $$Q$$ and $$R$$ are integral, while the entries of $$D$$ are reciprocals of integers. In the thin REF QR factorization, $$Q \in \Z^{m \times n}$$ also has pairwise orthogonal columns, and $$R \in \Z^{n \times n}$$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $$x$$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix).  more » « less
Award ID(s):
1835499
PAR ID:
10528067
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Optimization Letters
Volume:
18
Issue:
3
ISSN:
1862-4472
Page Range / eLocation ID:
681 to 695
Subject(s) / Keyword(s):
Computational Linear Algebra Exact Matrix Factorizations Exact Algorithms Roundoff Errors Exact Linear Algebra Exact QR Factorizations Computations on Rectangular Matrices
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the non-negative matrix factorization (NMF) problem, the input is an m×n matrix M with non-negative entries and the goal is to factorize it as M ≈ AW. The m × k matrix A and the k × n matrix W are both constrained to have non-negative entries. This is in contrast to singular value decomposition, where the matrices A and W can have negative entries but must satisfy the orthogonality constraint: the columns of A are orthogonal and the rows of W are also orthogonal. The orthogonal non-negative matrix factorization (ONMF) problem imposes both the non-negativity and the orthogonality constraints, and previous work showed that it leads to better performances than NMF on many clustering tasks. We give the first constant-factor approximation algorithm for ONMF when one or both of A and W are subject to the orthogonality constraint. We also show an interesting connection to the correlation clustering problem on bipartite graphs. Our experiments on synthetic and real-world data show that our algorithm achieves similar or smaller errors compared to previous ONMF algorithms while ensuring perfect orthogonality (many previous algorithms do not satisfy the hard orthogonality constraint). 
    more » « less
  2. A sign pattern is an array with entries in $$\{+,-,0\}$$. A real matrix $$Q$$ is row orthogonal if $QQ^T = I$. The Strong Inner Product Property (SIPP), introduced in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and the strong inner product property, Linear Algebra Appl. 592: 228-259, 2020], is an important tool when determining whether a sign pattern allows row orthogonality because it guarantees there is a nearby matrix with the same property, allowing zero entries to be perturbed to nonzero entries, while preserving the sign of every nonzero entry. This paper uses the SIPP to initiate the study of conditions under which random sign patterns allow row orthogonality with high probability. Building on prior work, $$5\times n$$ nowhere zero sign patterns that minimally allow orthogonality are determined. Conditions on zero entries in a sign pattern are established that guarantee any row orthogonal matrix with such a sign pattern has the SIPP. 
    more » « less
  3. Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that provides low-rank approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-performance computational settings. In this article, optimized randUTV implementations are presented for both shared-memory and distributed-memory computing environments. For shared memory, randUTV is redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from data synchronization points to achieve acceleration over the standard blocked algorithm based on a purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The performance of our new codes compares favorably with competing factorizations available on both shared-memory and distributed-memory architectures. 
    more » « less
  4. We study the rank of a random n × m matrix An, m; k with entries from GF(2), and exactly k unit entries in each column, the other entries being zero. The columns are chosen independently and uniformly at random from the set of all (nk) such columns. We obtain an asymptotically correct estimate for the rank as a function of the number of columns m in terms of c, n, k, and where m = cn/k. The matrix An, m; k forms the vertex-edge incidence matrix of a k-uniform random hypergraph H. The rank of An, m; k can be expressed as follows. Let |C2| be the number of vertices of the 2-core of H, and | E (C2)| the number of edges. Let m* be the value of m for which |C2| = |E(C2)|. Then w.h.p. for m < m* the rank of An, m; k is asymptotic to m, and for m ≥ m* the rank is asymptotic to m – |E(C2)| + |C2|. In addition, assign i.i.d. U[0, 1] weights Xi, i ∊ 1, 2, … m to the columns, and define the weight of a set of columns S as X(S) = ∑j∊S Xj. Define a basis as a set of n – 1 (k even) linearly independent columns. We obtain an asymptotically correct estimate for the minimum weight basis. This generalises the well-known result of Frieze [On the value of a random minimum spanning tree problem, Discrete Applied Mathematics, (1985)] that, for k = 2, the expected length of a minimum weight spanning tree tends to ζ(3) ∼ 1.202. 
    more » « less
  5. Summary This paper describes efficient algorithms for computing rank‐revealing factorizations of matrices that are too large to fit in main memory (RAM), and must instead be stored on slow external memory devices such as disks (out‐of‐core or out‐of‐memory). Traditional algorithms for computing rank‐revealing factorizations (such as the column pivoted QR factorization and the singular value decomposition) are very communication intensive as they require many vector‐vector and matrix‐vector operations, which become prohibitively expensive when data is not in RAM. Randomization allows to reformulate new methods so that large contiguous blocks of the matrix are processed in bulk. The paper describes two distinct methods. The first is a blocked version of column pivoted Householder QR, organized as a “left‐looking” method to minimize the number of the expensive write operations. The second method results employs a UTV factorization. It is organized as an algorithm‐by‐blocks to overlap computations and I/O operations. As it incorporates power iterations, it is much better at revealing the numerical rank. Numerical experiments on several computers demonstrate that the new algorithms are almost as fast when processing data stored on slow memory devices as traditional algorithms are for data stored in RAM. 
    more » « less