skip to main content


Title: Accurate Available Bandwidth Measurement with Packet Batching Mitigation for High Speed Networks
Measuring the Available Bandwidth (ABW) is an important function for traffic engineering, and in software-defined metro and wide-area network (SD-WAN) applications. Because network speeds are increasing, it is timely to re-visit the effectiveness of ABW measurement again. A significant challenge arises because of Interrupt Coalescence (IC), that network interface drivers use to mitigate the overhead when processing packets at high speed, but introduce packet batching. IC distorts receiver timing and decreases the ABW estimation. This effect is further exacerbated with software-based forwarding platforms that exploit network function virtualization (NFV) and the lower-cost and flexibility that NFV offers, and with the increased use of poll-mode packet processing popularized by the Data Plane Development Kit (DPDK) library. We examine the effectiveness of the ABW estimation with the popular probe rate models (PRM) such as PathChirp and PathCos++, and show that there is a need to improve upon them. We propose a modular packet batching mitigation that can be adopted to improve both the increasing PRM models like PathChirp and decreasing models like PathCos++. Our mitigation techniques improve the accuracy of ABW estimation substantially when packet batching occurs either at the receiver due to IC, DPDK based processing or intermediate NFV-based forwarding nodes. We also show that our technique helps improve estimation significantly in the presence of cross-traffic.  more » « less
Award ID(s):
1763929
NSF-PAR ID:
10299325
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional network resident functions (e.g., firewalls, network address translation) and middleboxes (caches, load balancers) have moved from purpose-built appliances to software-based components. However, L2/L3 network functions (NFs) are being implemented on Network Function Virtualization (NFV) platforms that extensively exploit kernel-bypass technology. They often use DPDK for zero-copy delivery and high performance. On the other hand, L4/L7 middleboxes, which usually require full network protocol stack support, take advantage of a full-fledged kernel-based system with a greater emphasis on functionality. Thus, L2/L3 NFs and middleboxes continue to be handled by distinct platforms on different nodes.This paper proposes MiddleNet that seeks to overcome this dichotomy by developing a unified network resident function framework that supports L2/L3 NFs and L4/L7 middleboxes. MiddleNet supports function chains that are essential in both NFV and middlebox environments. MiddleNet uses DPDK for zero-copy packet delivery without interrupt-based processing, to enable the ‘bump-in-the-wire’ L2/L3 processing performance required of NFV. To support L4/L7 middlebox functionality, MiddleNet utilizes a consolidated, kernel-based protocol stack processing, avoiding a dedicated protocol stack for each function. MiddleNet fully exploits the event-driven capabilities provided by the extended Berkeley Packet Filter (eBPF) and seamlessly integrates it with shared memory for high-performance communication in L4/L7 middlebox function chains. The overheads for MiddleNet are strictly load-proportional, without needing the dedicated CPU cores of DPDK-based approaches. MiddleNet supports flow-dependent packet processing by leveraging Single Root I/O Virtualization (SR-IOV) to dynamically select packet processing needed (Layer 2 to Layer 7). Our experimental results show that MiddleNet can achieve high performance in such a unified environment. 
    more » « less
  2. With the commercialization and deployment of 5G, efforts are beginning to explore the design of the next generation of cellular networks, called 6G. New and constantly evolving use cases continue to place performance demands, especially for low latency communications, as these are still challenges for the 3GPP-specified 5G design, and will have to be met by the 6G design. Therefore, it is helpful to re-examine several aspects of the current cellular network’s design and implementation.Based on our understanding of the 5G cellular network specifications, we explore different implementation options for a dis-aggregated 5G core and their performance implications. To improve the data plane performance, we consider advanced packet classification mechanisms to support fast packet processing in the User Plane Function (UPF), to improve the poor performance and scalability of the current design based on linked lists. Importantly, we implement the UPF function on a SmartNIC for forwarding and tunneling. The SmartNIC provides the fastpath for device traffic, while more complex functions of buffering and processing flows that suffer a miss on the SmartNIC P4 tables are processed by the host-based UPF. Compared to an efficient DPDK-based host UPF, the SmartNIC UPF increases the throughput for 64 Byte packets by almost 2×. Furthermore, we lower the packet forwarding latency by 3.75× by using the SmartNIC. In addition, we propose a novel context-level QoS mechanism that dynamically updates the Packet Detection Rule priority and resource allocation of a flow based on the user context. By combining our innovations, we can achieve low latency and high throughput that will help us evolve to the next generation 6G cellular networks. 
    more » « less
  3. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  4. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface. 
    more » « less
  5. One of the main roles of the Domain Name System (DNS) is to map domain names to IP addresses. Despite the importance of this function, DNS traffic often passes without being analyzed, thus making the DNS a center of attacks that keep evolving and growing. Software-based mitigation approaches and dedicated state-of-the-art firewalls can become a bottleneck and are subject to saturation attacks, especially in high-speed networks. The emerging P4-programmable data plane can implement a variety of network security mitigation approaches at high-speed rates without disrupting legitimate traffic. This paper describes a system that relies on programmable switches and their stateful processing capabilities to parse and analyze DNS traffic solely in the data plane, and subsequently apply security policies on domains according to the network administrator. In particular, Deep Packet Inspection (DPI) is leveraged to extract the domain name consisting of any number of labels and hence, apply filtering rules (e.g., blocking malicious domains). Evaluation results show that the proposed approach can parse more domain labels than any state-of-the-art P4-based approach. Additionally, a significant performance gain is attained when comparing it to a traditional software firewall -pfsense-, in terms of throughput, delay, and packet loss. The resources occupied by the implemented P4 program are minimal, which allows for more security functionalities to be added. 
    more » « less