Manufacturing engineers work in teams with a wide range of skills and credentials. Teamwork and collaborative problem solving (CPS) skills enable higher productivity and efficiency. However, these skills are largely absent from engineering education curricula and research in contexts involving multi-educational teams inclusive of technical college engineering students. We address this gap in research and practice through a qualitative case study exploring the contributions, experiences, and perspectives of technical college students working in multi-educational level teams to solve real-world engineering manufacturing problems. Data analyses resulted in six themes: (1) positive team culture, (2) valuing industry skills, (3) sharing responsibilities to iteratively make changes, (4) applying technical roles, (5) peer interactions, and (6) career preparation. Technical college students’ perceptions of challenges and successes are also discussed. Results imply that to effectively promote CPS and teamwork in similar contexts educators and industry leaders should consider the importance of (1) valuing students’/workers’ current professional identities while promoting productive conflict, (2) respecting differing team roles while encouraging skill development, and (3) fostering future career skills.
more »
« less
Offering Hands-on Manufacturing Workshops Through Distance Learning
This paper reports on how institutions collaborating on Additive Manufacturing (AM) and Smart Manufacturing (SM) have been able to adapt to the COVID-19 pandemic and be able to modify their planned activities in 2020 in an effort to continue delivering quality training and education to educators across the country. The pandemic made it impossible to offer the usual on-ground workshops to STEM educators and industrial practitioners. As a workaround, the project teams offered instructional delivery via Zoom and Microsoft Teams while also providing distance learning tools online. The best practices of the delivery and pros/cons of the operations will be presented with the feedback received from the participants.
more »
« less
- PAR ID:
- 10299367
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Secondary and post-secondary science and engineering educators share common class arrangements with both a laboratory and lecture component, coordinating both components so they build upon each other to create meaningful learning experiences. The COVID-19 pandemic forced educators to convert lectures and exams to online delivery. Doing so came with trade-off decisions about sacrificing laboratory experience goals of hands-on practice, problem-solving, and learning concepts at a deeper, tactile level. Due to rapidly changing conditions, educators faced course redesign to accommodate social distancing and virtual learning requirements. In this study, a team of undergraduate college students including one secondary science preservice teacher planned a set of lessons for STEM outreach to a K–12 audience. The team faced challenges in planning meaningful learning experiences in the face of COVID-19 uncertainty. Options for secondary and post-secondary educators to consider are provided in this article.more » « less
-
Abstract Over the last few decades, globalization has weakened the US manufacturing sector. The COVID-19 pandemic revealed import dependencies and supply chain shocks that have raised public and private awareness of the need to rebuild domestic production. A range of new technologies, collectively called Industry 4.0, create opportunities to revolutionize domestic and local manufacturing. Success depends on further refinement of those technologies, broad implementation throughout private companies, and concerted efforts to rebuild the industrial commons, the national ecosystem of producers, suppliers, service providers, educators, and workforce necessary to regain a competitive, innovative manufacturing sector. A recent workshop sponsored by the Engineering Research Visioning Alliance (ERVA) identified a range of challenges and opportunities to build a resilient, flexible, scalable, and high-quality manufacturing sector. This paper provides a strategic roadmap for regaining US manufacturing leadership by briefly summarizing discussions at the ERVA-sponsored workshop held in 2023 and providing additional analysis of key technical and economic issues that must be addressed to achieve dynamic, high-value manufacturing in the USA. The focus of this presentation is on discrete manufacturing of production of structural components, a large subset of total manufacturing that produces high-value inputs and finished products for domestic consumption and export.more » « less
-
In this work we evaluate the state of the semiconductor manufacturing industry and its challenges and trends. Future trends in the industry are analyzed from three perspectives: the evolution of Industry 4.0, the advances in semiconductor materials, and the impact of the Covid-19 Pandemic. The semiconductor manufacturing industry witnessed an acute decline in the United States and other regions in the two decades prior to the CoVid-19 pandemic. The decline was only uncovered after the chip shortage of 2021 that resulted from the severe supply chain disruption. Trends in the industry were analyzed from three perspectives: Industry 4.0, advances in materials, and the Post-pandemic era. As a result of the evolution of the fourth generation of industry (Industry 4.0), trends in semiconductor manufacturing include robotization, which caused the industry to become the largest market for industrial robotics since 2020, and an all-time peak globalization. The semiconductor industry is a very globalized industry with corporates from different parts of the world taking part in the production of the final product. Although some materials such as carbon and Gallium Nitride show promising trends to replace silicon as the material of choice. It will likely not be before two or three decades when a semiconductor material will be able to replace silicon. Challenges for the industry include the shortage of the trained-workforce, and the added inter-country restrictions that may hinder the globalization of the industry.more » « less
-
null (Ed.)Abstract Design teams are often asked to produce solutions of a certain type in response to design challenges. Depending on the circumstances, they may be tasked with generating a solution that clearly follows the given specifications and constraints of a problem (i.e., a Best Fit solution), or they may be encouraged to provide a higher risk solution that challenges those constraints, but offers other potential rewards (i.e., a Dark Horse solution). In the current research, we investigate: what happens when design teams are asked to generate solutions of both types at the same time? How does this request for dual and conflicting modes of thinking impact a team’s design solutions? In addition, as concept generation proceeds, are design teams able to discern which solution fits best in each category? Rarely, in design research, do we prompt design teams for “normal” designs or ask them to think about both types of solutions (boundary preserving and boundary challenging) at the same time. This leaves us with the additional question: can design teams tell the difference between Best Fit solutions and Dark Horse solutions? In this paper, we present the results of an exploratory study with 17 design teams from five different organizations. Each team was asked to generate both a Best Fit solution and a Dark Horse solution in response to the same design prompt. We analyzed these solutions using rubrics based on familiar design metrics (feasibility, usefulness, and novelty) to investigate their characteristics. Our assumption was that teams’ Dark Horse solutions would be more novel, less feasible, but equally useful when compared with their Best Fit solutions. Our analysis revealed statistically significant results showing that teams generally produced Best Fit solutions that were more useful (met client needs) than Dark Horse solutions, and Dark Horse solutions that were more novel than Best Fit solutions. When looking at each team individually, however, we found that Dark Horse concepts were not always more novel than Best Fit concepts for every team, despite the general trend in that direction. Some teams created equally novel Best Fit and Dark Horse solutions, and a few teams generated Best Fit solutions that were more novel than their Dark Horse solutions. In terms of feasibility, Best Fit and Dark Horse solutions did not show significant differences. These findings have implications for both design educators and design practitioners as they frame design prompts and tasks for their teams of interest.more » « less
An official website of the United States government

