skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Instructional Planning Modifications to Meet Social Distancing Requirements: Secondary and Post-Secondary Options
Secondary and post-secondary science and engineering educators share common class arrangements with both a laboratory and lecture component, coordinating both components so they build upon each other to create meaningful learning experiences. The COVID-19 pandemic forced educators to convert lectures and exams to online delivery. Doing so came with trade-off decisions about sacrificing laboratory experience goals of hands-on practice, problem-solving, and learning concepts at a deeper, tactile level. Due to rapidly changing conditions, educators faced course redesign to accommodate social distancing and virtual learning requirements. In this study, a team of undergraduate college students including one secondary science preservice teacher planned a set of lessons for STEM outreach to a K–12 audience. The team faced challenges in planning meaningful learning experiences in the face of COVID-19 uncertainty. Options for secondary and post-secondary educators to consider are provided in this article.  more » « less
Award ID(s):
1821566
PAR ID:
10314215
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Education Sciences
Volume:
11
Issue:
5
ISSN:
2227-7102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social computing is the study of how technology shapes human social interactions. This topic has become increasingly relevant to secondary school students (ages 11--18) as more of young people's everyday social experiences take place online, particularly with the continuing effects of the COVID-19 pandemic. However, social computing topics are rarely touched upon in existing middle and high school curricula. We seek to introduce concepts from social computing to secondary school students so they can understand how computing has wide-ranging social implications that touch upon their everyday lives, as well as think critically about both the positive and negative sides of different social technology designs. In this report, we present a series of six lessons combining presentations and hands-on activities covering topics within social computing and detail our experience teaching these lessons to approximately 1,405 students across 13 middle and high schools in our local school district. We developed lessons covering how social computing relates to the topics of Data Management, Encrypted Messaging, Human-Computer Interaction Careers, Machine Learning and Bias, Misinformation, and Online Behavior. We found that 81.13% of students expressed greater interest in the content of our lessons compared to their interest in STEM overall. We also found from pre- and post-lesson comprehension questions that 63.65% learned new concepts from the main activity. We release all lesson materials on a website for public use. From our experience, we observed that students were engaged in these topics and found enjoyment in finding connections between computing and their own lives. 
    more » « less
  2. The COVID-19 global pandemic presented unprecedented challenges to K-16 educators, including the closing of educational agencies and the abrupt transition to online teaching and learning. Educators sought to adapt in-person learning activities to teach in remote and hybrid online settings. This study explores how a partnership between middle and high school teachers in an urban school district and undergraduate STEM mentors of color leveraged digital tools and collaborative pedagogies to teach science, technology, and engineering during a global pandemic. We used a qualitative multi-case study to describe three cases of teachers and undergraduate mentors. We then offer a cross-case analysis to interpret the diverse ways in which partners used technologies, pedagogy, and content to promote equitable outcomes for students, both in remote and hybrid settings. We found that the partnership and technologies led to rigorous and connected learning for students. Teachers and undergraduates carefully scaffolded technology use and content applications while providing ongoing opportunities for students to receive feedback and reflect on their learning. Findings provide implications for community partnerships and digital tools to promote collaborative and culturally relevant STEM learning opportunities in the post-pandemic era. 
    more » « less
  3. A lasting impact of the COVID-19 global pandemic likely is the permanent inclusion of online learning in K–12. The rapid move to online learning left many teachers, parents, and students pining for in-person learning and highlighted major gaps in the online resources necessary for fully remote K–12 learning. But it also underscored considerable strengths of online formats for flexible learning and instruction—particularly as district capacities expanded and familiarity with online instruction increased. Many administrators now envision a permanent end to unplanned school closures (goodbye, snow days!) and long-term support for (at least intermittent) online learning. But what does continued online instruction mean for science learning, where hands-on learning is central to students’ developing skills and knowledge? Science educators implementing online instruction have faced myriad challenges, including providing effective feedback and guidance while students engaged in more independent work. We greatly respect and admire the passion and dedication that science teachers have invested in finding creative ways to implement science inquiry during online pandemic instruction. As we move beyond “emergency” remote instruction and build on shared experiences with online science teaching, it is an ideal time to rethink science inquiry online and to collectively pursue new approaches to authentic science instruction with online resources. 
    more » « less
  4. null (Ed.)
    [ABSTRACT] Educators need to create an informed scientifically aware citizenry, especially in the era of the COVID-19 pandemic, where public health measures have focused on increasing adoption of safe behaviors for reducing the transmission of COVID-19. Non-major science students make up an important, yet understudied, part of our public, given that they constitute tomorrow’s voters, workers, consumers, and policy-makers. Expecting that non-majors may benefit from a module connecting COVID-19 to community education, we implemented a novel E-service-learning module in light of the transition from an in-person course to an online platform. Our 4-week module included expert-led lectures, assigned digital infographics about COVID-19 safety precautions, and a required post-reflection assignment summarizing their learning gains. Out of 112 enrolled students, 87 consented to have their reflections analyzed and 8 students chose to participate in additional one-on-one online interviews. In an effort to determine which parts of our module garnered the most student commentary, we grouped post-reflection and interview data into four categories: service-learning infographic, service-learning guest lectures, information on COVID-19, and the broader implications of COVID-19. While 13% of students explicitly referenced infographics in their reflections, a far greater proportion (37%) explicitly referenced learning gains related to the expert-led lectures. Based on these findings, we encourage other educators to continue to explore the impact of E-service-learning content and assignments to help maximize learning in an online classroom environment during the COVID-19 pandemic and beyond. 
    more » « less
  5. The COVID-19 pandemic upended the lives of families with young children as school closures and social distancing requirements left caregivers struggling to facilitate educational experiences, maintain social connections, and ensure financial stability. Considering families' increased reliance on technology to survive, this research documents parents' lived experiences adapting to technology's outsized role alongside other shifts in family life associated with the COVID-19 pandemic. In this paper, we describe a 10-week study with 30 enrolled families with children aged 3 to 13 in the United States using the asynchronous remote communities (ARC) methodology to 1) understand the benefits and challenges faced by families as they adapted technology at home to navigate the pandemic, and 2) to ideate improvements to those experiences through co-design. We found that amidst gaps in infrastructural support from schools, workplaces, and communities, parents experienced deep anxiety and took on new roles, including tech support, school administrator, and curator of meaningful activities for their children. As parents shared bold and creative technology-based solutions for improving family well-being, schooling experiences, social life, and beyond, they demonstrated their capacity to contribute to new models of learning and family life. Our findings are a call to action for CSCW researchers, designers, and family-focused practitioners to work with learning communities that incorporate parent, teacher, and technology experiences in their academic and community planning. 
    more » « less