skip to main content


Title: Towards a phenomenological model on the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent media
A phenomenological model is proposed to describe the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent aqueous media. This model extends and generalizes a previous work that is limited to only the viscous deformation of neutrally buoyant droplets, conducted by Maffettone & Minale ( J. Non-Newtonian Fluid Mech. , vol. 78, 1998, pp. 227–241), into a high Reynolds number regime where the bubble deformation is dominated by flow inertia. By deliberately dividing flow inertia into contributions from the slip velocity and velocity gradients, a new formulation for bubble deformation is constructed and validated against two experiments designed to capture the deformation and orientation dynamics of bubbles simultaneously with two types of surrounding flows. The relative importance of each deformation mechanism is measured by its respective dimensionless coefficient, which can be isolated and evaluated independently through several experimental constraints without multi-variable fitting, and the results agree with the model predictions well. The acquired coefficients imply that bubbles reorient through body rotation as they rise in water at rest but through deformation along a different direction in turbulence. Finally, we provide suggestions on how to implement the proposed framework for characterizing the dynamics of deformable bubbles/drops in simulations.  more » « less
Award ID(s):
1854475 1905103
NSF-PAR ID:
10299389
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
920
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present simultaneous three-dimensional measurements of deformable finite-sized bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity between the two phases. The strongest preferential alignment is between the bubbles and slip velocity, indicating the latter plays a dominant role. We also compared our experimental results with the deformation of ideal material elements with no slip velocity or surface tension. Without these, material elements show highly different orientations, further confirming the importance of the slip velocity in the bubble orientation. In addition to deformation, when bubbles begin to break, their relative orientations change significantly. Although the alignment of the severely deformed bubbles with the eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major axis becomes aligned with (rather than perpendicular to) the slip velocity through an almost $90^{\circ }$ turn. This puzzling orientation change occurs because the slip velocity contains the contributions from both the bubble and the background flow. As the bubble experiences strong deformation, the rapid elongation of its semi-major axis leads to a large bubble velocity, which dominates the slip velocity and forces its alignment with the bubble's semi-major axis. The slip velocity thereby switches from a driving mechanism to a driven result as bubbles approach breakup. The results highlight the complex coupling between the bubble orientation and the surrounding flow, which should be included when modelling the bubble deformation and breakup in turbulence. 
    more » « less
  2. null (Ed.)
    We experimentally investigate the breakup mechanisms and probability of Hinze-scale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having access to the distributions of these two Weber numbers provides a unique way to extract the breakup probability of bubbles with sizes close to the Hinze scale. 
    more » « less
  3. Abstract Direct numerical simulation (DNS) is often used to uncover and highlight physical phenomena that are not properly resolved using other computational fluid dynamics methods due to shortcuts taken in the latter to cheapen computational cost. In this work, we use DNS along with interface tracking to take an in-depth look at bubble formation, departure, and ascent through water. To form the bubbles, air is injected through a novel orifice geometry not unlike that of a flute submerged underwater, which introduces phenomena that are not typically brought to light in conventional orifice studies. For example, our single-phase simulations show a significant leaning effect, wherein pressure accumulating at the trailing nozzle edges leads to asymmetric discharge through the nozzle hole and an upward bias in the flow in the rest of the pipe. In our two-phase simulations, this effect is masked by the surface tension of the bubble sitting on the nozzle, but it can still be seen following departure events. After bubble departure, we observe the bubbles converge toward an ellipsoidal shape, which has been validated by experiments. As the bubbles rise, we note that local variations in the vertical velocity cause the bubble edges to flap slightly, oscillating between relatively low and high velocities at the edges. 
    more » « less
  4. We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number ( Re , wave inertia relative to viscous effects) and Bond number ( Bo , wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo , and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $Re_\lambda \sim 100$ , consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. ( J. Fluid Mech. , vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $r_H$ . We confirm two regimes in the bubble size distribution, $N(r/r_H)\propto (r/r_H)^{-10/3}$ for $r>r_H$ , and $\propto (r/r_H)^{-3/2}$ for $r more » « less
  5. Abstract

    Most lava flows carry bubbles and crystals in suspension. From earlier works, it is known that spherical bubbles increase the effective viscosity while bubbles deformed by rapid flow decrease it. Changes in the spatial distribution of bubbles can lead to variable rheology and flow localization and thus modify the resulting lava flow structure and morphology. To understand the roles of bubble and solid phase crystal distributions, we conducted a series of analog experiments of high bubble fraction suspensions. We poured the analog lava on an inclined slope, observed its shape, calculated the velocity field, and monitored its local thickness. A region of localized rapid flow and low vesicularity, whose thickness is thinner than the surrounding area, develops at the center of the bubbly flows. These features suggest that the locally higher liquid fraction decreases the effective viscosity, increases the fluid density, and accelerates the flow. We also found that a halted particle‐bearing bubbly flow can resume flowing. We interpret this to result from the upward vertical separation of bubbles, which generates a liquid‐rich layer at the bottom of the flow. In our experiment, bubbles are basically spherical and decrease the flow velocity, while our estimate suggests that bubbles in natural lava flows could increase or decrease flow velocity. Downstream decreases in flow velocity stops the bubble deformation and can cause a sudden increase of effective viscosity. The vertical segregation of the liquid phase at the slowed flow front may be a way to generate a cavernous shelly paho’eho’e.

     
    more » « less