skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a phenomenological model on the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent media
A phenomenological model is proposed to describe the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent aqueous media. This model extends and generalizes a previous work that is limited to only the viscous deformation of neutrally buoyant droplets, conducted by Maffettone & Minale ( J. Non-Newtonian Fluid Mech. , vol. 78, 1998, pp. 227–241), into a high Reynolds number regime where the bubble deformation is dominated by flow inertia. By deliberately dividing flow inertia into contributions from the slip velocity and velocity gradients, a new formulation for bubble deformation is constructed and validated against two experiments designed to capture the deformation and orientation dynamics of bubbles simultaneously with two types of surrounding flows. The relative importance of each deformation mechanism is measured by its respective dimensionless coefficient, which can be isolated and evaluated independently through several experimental constraints without multi-variable fitting, and the results agree with the model predictions well. The acquired coefficients imply that bubbles reorient through body rotation as they rise in water at rest but through deformation along a different direction in turbulence. Finally, we provide suggestions on how to implement the proposed framework for characterizing the dynamics of deformable bubbles/drops in simulations.  more » « less
Award ID(s):
1854475 1905103
PAR ID:
10299389
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
920
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present simultaneous three-dimensional measurements of deformable finite-sized bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity between the two phases. The strongest preferential alignment is between the bubbles and slip velocity, indicating the latter plays a dominant role. We also compared our experimental results with the deformation of ideal material elements with no slip velocity or surface tension. Without these, material elements show highly different orientations, further confirming the importance of the slip velocity in the bubble orientation. In addition to deformation, when bubbles begin to break, their relative orientations change significantly. Although the alignment of the severely deformed bubbles with the eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major axis becomes aligned with (rather than perpendicular to) the slip velocity through an almost $$90^{\circ }$$ turn. This puzzling orientation change occurs because the slip velocity contains the contributions from both the bubble and the background flow. As the bubble experiences strong deformation, the rapid elongation of its semi-major axis leads to a large bubble velocity, which dominates the slip velocity and forces its alignment with the bubble's semi-major axis. The slip velocity thereby switches from a driving mechanism to a driven result as bubbles approach breakup. The results highlight the complex coupling between the bubble orientation and the surrounding flow, which should be included when modelling the bubble deformation and breakup in turbulence. 
    more » « less
  2. null (Ed.)
    We experimentally investigate the breakup mechanisms and probability of Hinze-scale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having access to the distributions of these two Weber numbers provides a unique way to extract the breakup probability of bubbles with sizes close to the Hinze scale. 
    more » « less
  3. We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity$$\tilde {w}_b$$compared with the rise velocity in quiescent flow$$w_b$$. The decrease in mean rise velocity of bubbles$$\tilde {w}_b/w_b$$is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number$$Fr=u'/\sqrt {gd}$$, where$$u'$$is the root-mean-square velocity fluctuations,$$g$$is gravity and$$d$$is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For$$Fr > 0.5$$, we confirm the scaling$$\tilde {w}_b / w_b \propto 1 / Fr$$, as proposed previously by Ruthet al.(J. Fluid Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability. 
    more » « less
  4. null (Ed.)
    We present an experimental investigation of the acceleration statistics and the added mass tensor of deformable gas bubbles in turbulence. By simultaneously tracking both bubbles and their surrounding flow in three dimensions, we find two independent ways of estimating the bubble acceleration: either directly measured from three-dimensional bubble trajectories or indirectly calculated from the bubble's equation of motion. When such an equation is projected onto the bubble frame, the added-mass coefficient becomes a diagonal tensor with three elements being linked to the standard deviation of bubble acceleration along three bubble principal axes. This constraint aids in experimentally determining the added mass coefficient tensor. The obtained trend of $$C_A$$ seems to agree with Lamb's potential flow solutions for spheroids, suggesting that the added-mass force on deformable bubbles can be modelled using spheroids with the same geometry and orientation. In addition, the probability density function of the relative orientation between the semi-major axis of deformed bubbles and the slip acceleration in turbulence is shown. A surprising finding is that the bubble orientation, indicated by the bubble's major axis, is not random in turbulence but rather is preferentially aligned with the slip acceleration. The degree of this alignment increases as bubbles deform more. Because accelerating along the major axis of a more deformed bubble entails reduced added mass, the acceleration standard deviation of deformable bubbles increases as a function of the bubble aspect ratio. 
    more » « less
  5. Abstract Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability in flow boiling. A previous study from our research group has successfully demonstrated using tapered microgap for transforming pool boiling into a self-sustained flow boiling-like system for cooling CPU through thermosiphon. To overcome the imaging challenges with nucleating vapor bubbles, the present work investigates the squeezing behaviour of air-injected bubbles between a tapered microgap with taper angles of 5°, 10°, and 15°. The air bubbles are injected at a rate of 3 ml/min, 15ml/min, and 30 ml/min in a pool of water. The bubble squeezing is recorded at 2000fps using a Photron high-speed camera. The experimental analysis compares the displacement and velocity of the advancing and receding bubble interfaces. The analysis found that in certain test cases, multiple bubbles coalesced while exiting the tapered microgap. In all the test cases, the receding interface of the bubble slingshots after detaching pushes the bubble out of the tapered microgap. The result from the current study provides an insight into the bubble flow and squeezing behavior that can be used for optimizing taper microgap geometries to enhance critical heat flux and heat transfer coefficient of two-phase, and air-injected single-phase heat transfer systems. 
    more » « less