We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problems with only noisy objective function evaluations. Toward this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of nonlinearity of the manifold constraint and issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and nonsmooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of ϵ-stationary point or ϵ-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
more »
« less
Zeroth-order Feedback Optimization for Cooperative Multi-Agent Systems
We consider a class of multi-agent optimization problems, where each agent is associated with an action vector and a local cost that depends on the joint actions of all agents, and the goal is to minimize the average of the local costs. Such problems arise in many control applications such as wind farm operation and mobile sensor coverage. In many of these applications, while we have access to (zeroth-order) information about function values, it can be difficult to obtain (first-order) gradient information. In this paper, we propose a zeroth-order feedback optimization (ZFO) algorithm based on two-point gradient estimators for the considered class of problems, and provide the convergence rate to a first-order stationary point for nonconvex problems. We complement our theoretical analysis with numerical simulations on a wind farm power maximization problem.
more »
« less
- Award ID(s):
- 2003111
- PAR ID:
- 10299390
- Date Published:
- Journal Name:
- 2020 59th IEEE Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 3649 to 3656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Functionally constrained stochastic optimization problems, where neither the objective function nor the constraint functions are analytically available, arise frequently in machine learning applications. In this work, assuming we only have access to the noisy evaluations of the objective and constraint functions, we propose and analyze stochastic zeroth-order algorithms for solving this class of stochastic optimization problem. When the domain of the functions is [Formula: see text], assuming there are m constraint functions, we establish oracle complexities of order [Formula: see text] and [Formula: see text] in the convex and nonconvex settings, respectively, where ϵ represents the accuracy of the solutions required in appropriately defined metrics. The established oracle complexities are, to our knowledge, the first such results in the literature for functionally constrained stochastic zeroth-order optimization problems. We demonstrate the applicability of our algorithms by illustrating their superior performance on the problem of hyperparameter tuning for sampling algorithms and neural network training. Funding: K. Balasubramanian was partially supported by a seed grant from the Center for Data Science and Artificial Intelligence Research, University of California–Davis, and the National Science Foundation [Grant DMS-2053918].more » « less
-
Zeroth-order methods are extensively used in machine learning applications where gradients are infeasible or expensive to compute, such as black-box attacks, reinforcement learning, and language model fine-tuning. Existing optimization theory focuses on convergence to an arbitrary stationary point, but less is known about the implicit regularization that provides a fine-grained characterization of which particular solutions are reached. This paper shows that zeroth-order optimization with the standard two-point estimator favors solutions with small trace of Hessian, a measure widely used to distinguish between sharp and flat minima. The authors provide convergence rates of zeroth-order optimization to approximate flat minima for convex and sufficiently smooth functions, defining flat minima as minimizers that achieve the smallest trace of Hessian among all optimal solutions. Experiments on binary classification tasks with convex losses and language model fine-tuning support the theoretical findings.more » « less
-
Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with a warm start strategy finds an ϵ-approximate local minimum of bilevel optimization in $$\tilde O(\epsilon^{-2})$$ iterations with high probability. Moreover, we propose an inexact NEgative-curvature-Originated-from-Noise Algorithm (iNEON), an algorithm that can escape saddle point and find local minimum of stochastic bilevel optimization. As a by-product, we provide the first nonasymptotic analysis of perturbed multi-step gradient descent ascent (GDmax) algorithm that converges to local minimax point for minimax problems.more » « less
-
Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature.more » « less
An official website of the United States government

