skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A city-wide experimental testbed for the next generation wireless networks
To facilitate research in dynamic spectrum access, 5G, vehicular networks, underground wireless communications, and radio frequency machine learning, a city-wide experimental testbed is developed to provide realistic radio environment, standardized experimental configurations, reusable datasets, and advanced computational resources. The testbed contains 5 cognitive radio sites, and covers 1.1 square miles across two campuses of the University of Nebraska-Lincoln and a public street in the city of Lincoln, Nebraska. Each site is equipped with a 4x4 MIMO software-defined radio transceiver with 20Gbps fronthaul connectivity. Additional cognitive radio transceivers with an underground 2x2 MIMO antenna are included in a site. High speed fronthaul network based on dedicated fiber connects the 5 sites to a cloud-based central unit for data processing and storage. The testbed provides researchers rich computational resources such as arrays of CPUs and GPUs at the cloud and FPGAs at both the edge and fronthaul network. Developed via the collaboration of the university, city, and industrial partners, this testbed will facilitate education and researches in academic and industrial communities.  more » « less
Award ID(s):
1816938 1731833
PAR ID:
10299413
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Ad hoc networks
Volume:
111
Issue:
102305
ISSN:
1570-8705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multiuser advanced wireless testbed that is being deployed in New York City [1]. Open APIs and programmability across all the technology components and protocol layers in COSMOS will enable researchers to explore 5G technologies in a real world environment. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies as well as experimentation directly in the optical physical layer. A paper on the COSMOS optical architecture was previously presented in [2]. In this talk, we briefly introduce COSMOS’ optical x-haul network with SDN control, and its integration with the software-defined radio (SDR) and mobile edge cloud. 
    more » « less
  2. Practical testing of the latest wireless communications standards requires the availability of flexible radio frequency hardware, net-working and computing resources. We are providing a Cloud-based infrastructure which offers the necessary resources to carry out tests of the latest 5G standards. The testbed provides a Cloud-based Infrastructure as a Service. The research community can access hardware and software resources through a virtual platform that enables isolation and customization of experiments. In other words, researchers have control over the preferred experimental architecture and can run concurrent experiments on the same testbed. This paper introduces the resources that can be used to develop 5G testbeds and experiments. 
    more » « less
  3. Baseband processing is one of the most time-consuming and computationally expensive tasks in radio access networks (RANs), which is typically realized in dedicated hardware. The concept of virtualizing the RAN functions by moving their computation to edge data centers can significantly reduce the deployment cost and enable more flexible use of the network resources. Recent studies have focused on software-based baseband processing for large-scale sub-6 GHz MIMO systems, while 5G also embraces the millimeter-wave (mmWave) frequency bands to achieve further improved data rates leveraging the widely available spectrum. Therefore, it is important to build a platform for the experimental investigation of software-based baseband processing for mmWave MIMO systems. In this paper, we implement programmable mmWave MIMO radios equipped with real-time baseband processing capability, leveraging the open-access PAWR COSMOS testbed. We first develop Agora-UHD, which enables UHD-based software-defined radios (SDRs) to interface with Agora, an open-source software realization of real-time massive MIMO baseband processing. Next, we integrate Agora-UHD with the USRP SDRs and IBM 28 GHz phased array antenna module (PAAM) subsystem boards deployed in the PAWR COSMOS testbed. We demonstrate a 2×2 28 GHz polarization MIMO link with a bandwidth of 122.88 MHz, and show that it can meet the real-time processing deadline of 0.375 ms (3 transmission time intervals for numerology 3 in 5G NR FR2) using only 8 CPU cores. The source code of Agora-UHD and its integration with the programmable 28 GHz radios in the COSMOS testbed with example tutorials are made publicly available. 
    more » « less
  4. Participatory asset mapping activities were used in both Arkansas and Nebraska to gain an understanding of existing organization-based assets and areas for improvement in the context of emergency preparedness. The main goals of the mapping activities that the Natural Hazards Center team led in Arkansas and Nebraska included: (1) Identifying organizational strengths, capacities, skills, and resources within organizations generally and for children in disasters specifically; (2) Deciphering organizations’ limitations and gaps both generally and in providing support for children in disasters; and (3) Facilitating potential cooperation between and among organizations by generating a shared awareness and understanding of organizations’ collective assets and areas for improvement. Our team constructed and facilitated a participatory asset mapping activity that was conducted during the two facilitated sessions held on December 10, 2018 in Lincoln, Nebraska and December 13, 2018 in Little Rock, Arkansas, and hosted by Save the Children for the Building Capacities to Protect Children Project. Participants in both states included individuals from state-level VOAD member organizations, community-based organizations, emergency management, and partners that provide services for children during disasters and emergencies. A total of 16 individuals participated in Arkansas, and 12 in Nebraska. This publication includes the verbal consent form, participatory asset mapping guidance document, and organizational asset mapping worksheets. The participatory asset mapping facilitator’s guide provides step-by-step instructions for individuals interested in conducting participatory asset mapping. This can be adapted to fit other research and evaluation objectives. The participatory asset mapping protocol was used to facilitate the participatory asset mapping activities among Arkansas and Nebraska VOAD participants and organizational partners in Little Rock Arkansas, and Lincoln, Nebraska, respectively. The organizational worksheets were used for conducting the participatory asset mapping activities in Arkansas and Nebraska and can easily be adapted for use in other contexts or organizational types.Between 2018 and 2020, the Natural Hazards Center at the University of Colorado Boulder conducted an evaluation entitled: Building State Voluntary Organizations Active in Disaster (VOADs) Capacities to Protect Children in Emergencies. This project was designed to assess the capacity of state-level VOADs to address children’s needs before, during, and after disasters. This project involved multi-method research in the focal states of Arkansas and Nebraska and in collaboration with members of VOADs, emergency management, Save the Children, and other child-serving organizations in both states. The evaluation team conducted participatory engagement exercises, survey research, secondary data analysis and GIS mapping, and an interorganizational network analysis survey. This project includes research instruments and the final reports produced as part of this project. The envisioned audience for these materials includes researchers, emergency managers, and professionals who work for child-serving organizations. 
    more » « less
  5. The Adapt, Implement, and Research at Nebraska (AIR@NE) project, funded by the NSF CSforAll Researcher-Practitioner Partnership (RPP) program, examines the adaptation of a validated K-8 Computer Science (CS) curriculum in diverse school districts statewide. Our Research-Practitioner Partnership is primarily between the University of Nebraska-Lincoln, the Lincoln Public Schools, and other diverse school districts across Nebraska. Our primary goal is to study and document how different districts, including rural, predominantly minority, and Native American reservation, adopt the curriculum and broaden participation in CS. In addition, the project is developing instructional capacity for K-8 CS education with diverse learners. Our research also adapts and develops teacher and student CS assessments, and documents case studies using design-based research methodology to show how an adaptive curriculum broadens CS participation. Our Professional Development (PD) program for K-8 CS teachers is comprehensive. It consists of three summer courses for each cohort and a series of workshops during the academic year. Of the three summer courses, two are administered in the first year for a cohort: (1) an introduction to computer science course where teachers learn fundamental CS topics and programming in a high-level programming language (e.g., Python), and engage in problem solving and practice computational thinking, and (2) a course in pedagogy for teachers to learn how to teach K-8 CS, including lesson designs, use of instructional resources such as dot-and-dash robots, and assessments. Then, the following academic year after the summer, the PD program holds a series of workshops on five separate Saturdays to support teacher implementation of their lesson modules during the academic year, reflect and improve on their lessons, reinforce on CS concepts and pedagogy techniques, review and adopt alternative instructional resources, and share insights. These Saturday workshops also facilitate further community building and resource sharing. The third course occurs in the second year for a cohort, involving dissemination of research results from the team to the teachers, opportunities to discuss new resources and approaches on teaching CS concepts and computational thinking, and sharing of experiences and insights after teachers have completed one academic year of teaching CS. Unlike the first two courses that are required of teachers, this third course is an opt-in course that combines more in- depth pedagogy and elements of leadership. Thus far, we have had two cohorts and used the design methodology to revise our PD program, making our design more robust based on the lessons learned over the two years. The course materials, assessment, and survey instruments have also been improved. While the project is on-going we have data to that indicates the impact of the work so far. There were significant pre-post gains for both cohorts in teachers’ knowledge of computer science concepts and computational thinking. Scores on the computational thinking assessment were higher than those for CS concepts, which was to be expected given their CS teaching experience. Moreover, in both cohorts, the teachers’ confidence in teaching CS improved significantly. 
    more » « less