skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Load Sharing Scheme Incorporating Power Security Margins for Parallel Operation of Voltage Source Inverters
The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency.  more » « less
Award ID(s):
1808988
PAR ID:
10299583
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
14
Issue:
18
ISSN:
1996-1073
Page Range / eLocation ID:
5825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Microgrids (MGs) comprising multiple interconnected distributed energy resources (DERs) with coordinated control strategies can operate in both grid-connected and islanded modes. In the grid-connected mode, the frequency and bus voltages are maintained by the utility grid. In the islanded mode, the DERs maintain the frequency and bus voltages in the MG. This paper presents a load demand sharing strategy in an islanded voltage source inverter-based microgrid (VSI-MG). The survivability of the interconnected MG in the presence of a single fully loaded VSI in an islanded VSI-MG is investigated. The concept of virtual synchronous machines (VSM) that enables the modeling of the VSI to emulate the inertia effect of synchronous machines is applied and then a Jacobian-based approach is formulated that takes into account, the capacity of the VSI. Simulation results are presented to verify the effectiveness of the approach. 
    more » « less
  2. In this paper, a near‐state pulse‐width modulation (NSPWM) algorithm is proposed and implemented on dual‐two‐level voltage‐source inverters (D2L‐VSIs) in order to reduce the common‐mode voltage (CMV), the inverter switching losses, the current total harmonic distortion, and the side effects of bearing currents ‐‐compared with space vector modulation (SVM) and PWM7. To gain these goals, two conventional two‐level inverters of the D2L‐VSI are controlled, separately, with specific switching sequences and an adjusted phase difference between the carriers of two inverters. For evaluating and comparing these PWM techniques mathematically, both CMV root mean square generated and switching losses of the D2L‐VSI are formulated as a function of the power factor of the D2L‐VSI, which is driven by the methods detailed in this study. Eventually, theories and analysis, as well as simulations and experimental results ‐‐which are generated by MATLAB/Simulink environment and a 300 W scaled‐down D2LVSI prototype, respectively ‐‐authenticate the superiority of the proposed NSPWM over both SVM and PWM7. 
    more » « less
  3. Enhancing grid resilience is proposed through the integration of distributed energy resources (DERs) with microgrids. Due to the diverse nature of DERs, there is a need to explore the optimal combined operation of these energy sources within the framework of microgrids. As such, this paper presents the design, implementation and validation of a Model Predictive Control (MPC)-based secondary control scheme to tackle two challenges: optimal islanded operation, and optimal re-synchronization of a microgrid. The MPC optimization algorithm dynamically adjusts input signals, termed manipulated variables, for each DER within the microgrid, including a gas turbine, an aggregate photovoltaic (PV) unit, and an electrical battery energy storage (BESS) unit. To attain optimal islanded operation, the secondary-level controller based on Model Predictive Control (MPC) was configured to uphold microgrid functionality promptly following the islanding event. Subsequently, it assumed the task of power balancing within the microgrid and ensuring the reliability of the overall system. For optimal re-synchronization, the MPC-based controller was set to adjust the manipulated variables to synchronize voltage and angle with the point of common coupling of the system. All stages within the microgrid operation were optimally achieved through one MPC-driven control system, where the controller can effectively guide the system to different goals by updating the MPC’s target reference. More importantly, the results show that the MPC-based control scheme is capable of controlling different DERs simultaneously, mitigating potentially harmful transient rotor torques from the re-synchronization as well as maintaining the microgrid within system performance requirements. 
    more » « less
  4. Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids. 
    more » « less
  5. null (Ed.)
    This paper proposes a finite-time event-triggered secondary frequency and voltage control for islanded AC microgrids (MGs) in a distributed fashion. The proposed control strategy can effectively perform frequency restoration and voltage regulations, while sharing the active and reactive power among the distributed generators (DGs) based on their power ratings. The finite-time control enables a system to reach consensus in a finite period of time enhanced from the asymptotic convergence. The event-triggered communication is utilized to reduce the communication burden among the DG controllers by transmitting data among DGs if an event-triggering condition is satisfied. The performance of the proposed finite-time event-triggered frequency control is verified utilizing a hardware-in-the-loop experimental testbed which simulates an AC MG in Opal-RT. 
    more » « less