skip to main content

Title: Load Sharing Scheme Incorporating Power Security Margins for Parallel Operation of Voltage Source Inverters
The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency.
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Microgrids (MGs) comprising multiple interconnected distributed energy resources (DERs) with coordinated control strategies can operate in both grid-connected and islanded modes. In the grid-connected mode, the frequency and bus voltages are maintained by the utility grid. In the islanded mode, the DERs maintain the frequency and bus voltages in the MG. This paper presents a load demand sharing strategy in an islanded voltage source inverter-based microgrid (VSI-MG). The survivability of the interconnected MG in the presence of a single fully loaded VSI in an islanded VSI-MG is investigated. The concept of virtual synchronous machines (VSM) that enables the modeling ofmore »the VSI to emulate the inertia effect of synchronous machines is applied and then a Jacobian-based approach is formulated that takes into account, the capacity of the VSI. Simulation results are presented to verify the effectiveness of the approach.« less
  2. Filtration-based (FB) power/current allocation of battery-supercapacitor (SC) hybrid energy storage systems (HESSs) is the most common approach in DC microgrid (MG) applications. In this approach, a low-pass or a high-pass filter is utilized to decompose the input power/current of HESS into high-frequency and low-frequency components and then assign the high-frequency parts to SC. Moreover, to avoid the state of charge violation (SoC) of SC, this approach requires a rule-based supervisory controller which may result in the discontinuous operation of SC. This paper first provides a small-signal stability analysis to investigate the impact of an FB current allocation system on themore »dynamic stability of an islanded DC MG in which a grid-forming HESS supplies a constant power load (CPL). Then, it shows that the continuous operation of SC is essential if the grid-forming HESS is loaded by large CPLs. To address this issue, this paper proposes a model predictive control (MPC) strategy that works in tandem with a high-pass filter to perform the current assignment between the battery and SC. This approach automatically restores the SoC of SC after sudden load changes and limits its SoC variation in a predefined range, so that ensure the continuous operation of SC. As a result, the proposed FB-MPC method indirectly enables the MG’s proportional-integral (PI) voltage controller to operate with higher gain values leading to better transient response and voltage quality. The performance of the proposed approach is then validated by simulating the system in MATLAB/Simulink.« less
  3. This paper proposes a finite-time event-triggered secondary frequency and voltage control for islanded AC microgrids (MGs) in a distributed fashion. The proposed control strategy can effectively perform frequency restoration and voltage regulations, while sharing the active and reactive power among the distributed generators (DGs) based on their power ratings. The finite-time control enables a system to reach consensus in a finite period of time enhanced from the asymptotic convergence. The event-triggered communication is utilized to reduce the communication burden among the DG controllers by transmitting data among DGs if an event-triggering condition is satisfied. The performance of the proposed finite-timemore »event-triggered frequency control is verified utilizing a hardware-in-the-loop experimental testbed which simulates an AC MG in Opal-RT.« less
  4. In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any numbermore »of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics.« less
  5. Increased capacity associated with renewable energy sources has created a need for improved methods for controlling power flows from inverter-based generation. This research provides a comparative study of finite-control-set model predictive current control (FCS-MPC-based) with respect to conventional proportional-integral-based (PI-based) synchronous current control for a three-phase voltage source inverter (VSI). The inverter is accompanied by an inductive-capacitive-inductive (LCL) filter to attenuate pulse width modulation (PWM) switching harmonics. However, an LCL filter introduces a resonance near to the control stability boundary, giving rise to substantial complexity from a control perspective. In order to avoid potential instability caused by the resonance, activemore »damping can be included in the PI-based current control. Though properly designed active damping can improve inverter stability, in practice the robustness of standard PI control is not attainable due to variability in the grid inductance at the point of common coupling (PCC). This is due to impedance variations causing large shifts in the LCL resonance frequency. Weak grid conditions (i.e., a low short-circuit ratio) and a correspondingly high line impedance are particularly susceptible to LCL induced resonance instabilities. As an approach to operate with grid impedance variations and weak grid conditions, FCS-MPC has the potential to produce superior performance compared to PI-based current control methods. This comparative study indicates that FCS-MPC has improved resonance damping and fast dynamic capability in a system with renewable energy sources under weak grid conditions. Detailed results from MATLAB/SimPower are presented to validate the suggested FCS-MPC method where it is robust to uncertainty in the grid impedance variations. Overall results indicate an improvement over conventional PI-based current control methods.« less