This paper investigates integration of distributed energy resources (DERs) in microgrids (MGs) through two-stage power conversion structures consisting of DC-DC boost converter and DC-AC voltage source converter (VSC) subsystems. In contrast to existing investigations that treated DC-link voltage as an ideal constant voltage, this paper considers the non-ideal dynamic coupling between both subsystems for completeness and higher accuracy, which introduces additional DC-side dynamics to the VSC. The analysis shows parameters of the boost converter's power model that impact stability through the DC-link. Carefully selecting these parameters can mitigate this effect on stability and improve dynamic performance across the DC-link. Hence, an optimization framework is developed to facilitate in selecting adequate boost converter parameters in designing a stable voltage source converter-based microgrid (VSC-MG). The developed optimization framework, based on particle swarm optimization, considers dynamic coupling between both subsystems and is also effective in avoiding inadequate boost converter parameters capable of propagating instability through the DC-link to the VSC. Simulations are performed with MATLAB/Simulink to validate theoretical analyses.
more »
« less
Control Methodologies to Mitigate and Regulate Second-Order Ripples in DC–AC Conversions and Microgrids: A Brief Review
Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids.
more »
« less
- Award ID(s):
- 2034938
- PAR ID:
- 10423385
- Date Published:
- Journal Name:
- Energies
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 817
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.more » « less
-
null (Ed.)The increasing viability of wide band gap power semiconductors, widespread use of distributed power generations, and rise in power levels of these applications have increased interest and need for medium voltage converters. Understanding the definitions of insulation coordination and their relationship to applications and methodologies used in the test environment allows system engineers to select the correct insulation materials for the design and to calculate the required distances between the conductive surfaces, accessible parts and ground accurately. Although, design guidelines are well established for low voltage systems, there are some deficiencies in understanding and meeting the insulation coordination requirements in medium voltage, medium frequency applications. In this study, an overview on standards for insulation coordination and safety requirements is presented to guide researchers in the development of medium voltage power electronic converters and systems. In addition, an insulation coordination study is performed as a case study for a medium frequency isolated DC/DC converter that provides conversion from a 13.8kV AC system to a 4.16kV AC system.more » « less
-
Summary Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works.more » « less
-
Unfolding-based single-stage ac-dc converters offer benefits in terms of efficiency and power density due to the low-frequency operation of the Unfolder, resulting in negligible switching losses. However, the operation of the Unfolder results in time-varying dc voltages at the input of the subsequent dc-dc converter, complicating its soft-switching analysis. The complication is further enhanced due to the nonlinear nature of the output capacitance ( Coss ) of MOSFETs employed in the dc-dc converter. Furthermore, unlike two-stage topologies with a constant dc-link voltage, as seen in high-frequency grid-tied converters, grid voltage fluctuations also impact the dc input voltages of the dc-dc converter in unfolding-based systems. This work comprehensively analyzes the soft-switching phenomenon in the T-type primary bridge-based dc-dc converter used in unfolding-based topologies, considering all the aforementioned challenges. An energy-based methodology is proposed to determine the minimum zero-voltage switching (ZVS) current and ZVS time during various switching transitions of the T-type bridge. It is shown that the existing literature on the ZVS analysis of the T-type bridge-based resonant dc-dc converter, relying solely on capacitive energy considerations, substantially underestimates the required ZVS current values, with errors reaching up to 50%. The proposed analysis is verified through both simulation and hardware testing. The hardware testing is conducted on a 20-kW 3- ϕ unfolding-based ac-dc converter designed for high-power electric vehicle battery charging applications. The ZVS analysis is verified at various grid angles with the proposed analysis ensuring a complete ZVS operation of the ac-dc system throughout the grid cycle.more » « less
An official website of the United States government

