skip to main content


Title: What determines the structure of short gamma-ray burst jets?
ABSTRACT The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst (sGRB) arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that the jet is ejected from the central engine with a top-hat structure and its final structure, which determines the observed light curve and spectra, is primarily regulated by the interaction with the nearby environment. However, jets are expected to be produced with a structure that is more complex than a simple top-hat, as shown by global accretion simulations. We present numerical simulations of sGRBs launched with a wide range of initial structures, durations, and luminosities. We follow the jet interaction with the merger remnant wind and compute its final structure at distances ≳1011 cm from the central engine. We show that the final jet structure, as well as the resulting afterglow emission, depends strongly on the initial structure of the jet, its luminosity, and duration. While the initial structure of the jet is preserved for long-lasting sGRBs, it is strongly modified for jets barely making their way through the wind. This illustrates the importance of combining the results of global simulations with propagation studies in order to better predict the expected afterglow signatures from neutron star mergers. Structured jets provide a reasonable description of the GRB 170817A afterglow emission with an off-axis angle θobs ≈ 22.5°.  more » « less
Award ID(s):
1911206
NSF-PAR ID:
10299599
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4363 to 4371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    GW170817/GRB170817A has offered unprecedented insight into binary neutron star post-merger systems. Its Prompt and afterglow emission imply the presence of a tightly collimated relativistic jet with a smooth transverse structure. However, it remains unclear whether and how the central engine can produce such structured jets. Here, we utilize 3D general relativistic magnetohydrodynamic simulations starting with a black hole surrounded by a magnetized torus with properties typically expected of a post-merger system. We follow the jet, as it is self-consistently launched, from the scale of the compact object out to more than three orders of magnitude in distance. We find that this naturally results in a structured jet, which is collimated by the disc wind into a half-opening angle of roughly 10°; its emission can explain features of both the prompt and afterglow emission of GRB170817A for a 30° observing angle. Our work is the first to compute the afterglow, in the context of a binary merger, from a relativistic magnetized jet self-consistently generated by an accreting black hole, with the jet’s transverse structure determined by the accretion physics and not prescribed at any point.

     
    more » « less
  2. Abstract We investigate prospects for the detection of high-energy neutrinos produced in the prolonged jets of short gamma-ray bursts (sGRBs). The X-ray light curves of sGRBs show extended emission components lasting for 100–1000 s, which are considered to be produced by prolonged engine activity. Jets produced by such activity should interact with photons in the cocoon formed by the propagation of the jet inside the ejecta of neutron star mergers. We calculate neutrino emission from jets produced by prolonged engine activity, taking account of the interaction between photons provided from the cocoon and cosmic rays accelerated in the jets. We find that IceCube-Gen2, a future neutrino telescope, with second-generation gravitational-wave detectors will probably be able to observe neutrino signals associated with gravitational waves with around 10 years of operation, regardless of the assumed value of the Lorentz factor of the jets. Neutrino observations may enable us to constrain the dissipation region of the jets. We apply this model to GRB 211211A, a peculiar long GRB whose origin may be a binary neutron star merger. Our model predicts that IceCube is unlikely to detect any associated neutrinos, but a few similar events will be able to put a meaningful constraint on the physical quantities of the prolonged engine activities. 
    more » « less
  3. null (Ed.)
    ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of ${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$, we can rule out very energetic merger ejecta ${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$, thus excluding the presence of a powerful magnetar as a merger remnant. 
    more » « less
  4. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less
  5. Abstract

    The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow for probing the properties of the emitting outflow and its engine to an unprecedented detail. Because the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jet’s centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ∼0.6 s, which is comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20% of the injected energy is transferred to the ejecta via mechanical work.

     
    more » « less