skip to main content

Search for: All records

Award ID contains: 1911206

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ∼100 tidal disruption events (TDEs) observed so far exhibit a wide range of emission properties both at peak and over their lifetimes. Some TDEs radiate predominantly at X-ray energies, while others radiate chiefly at UV and optical wavelengths. While the peak luminosities across TDEs show distinct properties, the evolutionary behavior can also vary between TDEs with similar peak emission properties. In particular, for optical TDEs, while their UV and optical emissions decline somewhat following the fallback pattern, some events can greatly rebrighten in X-rays at late time. In this Letter, we conduct three-dimensional general relativistic radiation magnetohydrodynamics simulations of TDE accretion disks at varying accretion rates in the regime of super-Eddington accretion. We make use of Monte Carlo radiative transfer simulations to calculate the reprocessed spectra at various inclinations and at different evolutionary stages. We confirm the unified model proposed by Dai et al., which predicts that the observed emission largely depends on the viewing angle of the observer with respect to the disk orientation. Furthermore, we find that disks with higher accretion rates have elevated wind and disk densities, which increases the reprocessing of the high-energy radiation and thus generally augments the optical-to-X-ray flux ratio along amore »particular viewing angle. This implies that at later times, as the accretion level declines, we expect that more X-rays will leak out along intermediate viewing angles. Such dynamical model for TDEs can provide a natural explanation for the diversity in the emission properties observed in TDEs at peak and along their temporal evolution.

    « less
  2. Abstract

    The extent to which turbulence mixes gas in the face of recurrent infusions of fresh metals by supernovae (SN) could help provide important constraints on the local star formation conditions. This includes predictions of the metallicity dispersion among metal-poor stars, which suggests that the interstellar medium was not very well mixed at these early times. The purpose of thisLetteris to help isolate, via a series of numerical experiments, some of the key processes that regulate turbulent mixing of SN elements in galactic disks. We study the gas interactions in small simulated patches of a galaxy disk with the goal of resolving the small-scale mixing effects of metals at parsec scales, which enables us to measure the turbulent diffusion coefficient in various galaxy environments. By investigating the statistics of variations ofαelements in these simulations, we are able to derive constraints not only on the allowed range of intrinsic yield variations in SN explosions but also on the star formation history of the Milky Way. We argue that the observed dispersion of [Mg/Fe] in metal-poor halo stars is compatible with the star-forming conditions expected in dwarf satellites or in an early low-star-forming Milky Way progenitor. In particular, metal variations in starsmore »that have not been phase-mixed can be used to infer the star-forming conditions of disrupted dwarf satellites.

    « less
  3. Abstract

    Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV Niiito Ciiiline ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2M). We determine that these moderately massive disruptions are overrepresented by a factor of ≳102when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.

  4. Abstract

    The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.

  5. Abstract We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host–galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z ≈ 0.5. We present relative SN rates from YSE’s magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNemore »Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.« less
    Free, publicly-accessible full text available May 1, 2024
  6. Abstract We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9–59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy -band filters was collected primarily with Pan-STARRS and supplemented by multiple 1–4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f ( t ) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes ofmore »M g = −19.8 ± 0.6 and M r = − 19.4 ± 0.3 and M z = −20.1 ± 0.3. If this is an SN component, then Bayesian modeling of the excess flux would imply explosion parameters of M ej = 7.1 − 1.7 + 2.4 M ⊙ , M Ni = 1.0 − 0.4 + 0.6 M ⊙ , and v ej = 33,900 − 5700 + 5900 km s −1 , for the ejecta mass, nickel mass, and ejecta velocity respectively, inferring an explosion energy of E kin ≃ 2.6–9.0 × 10 52 erg.« less
    Free, publicly-accessible full text available March 1, 2024
  7. Free, publicly-accessible full text available December 1, 2023
  8. Common-envelope evolution is a stage in binary system evolution in which a giant star engulfs a companion. The standard energy formalism is an analytical framework to estimate the amount of energy transferred from the companion's shrinking orbit into the envelope of the star that engulfed it. We show analytically that this energy transfer is larger than predicted by the standard formalism. As the orbit of the companion shrinks, the mass it encloses becomes smaller, and the companion is less bound than if the enclosed mass had remained constant. Therefore, more energy must be transferred to the envelope for the orbit to shrink further. We derive a revised energy formalism that accounts for this effect, and discuss its consequences in two contexts: the formation of neutron star binaries, and the engulfment of planets and brown dwarfs by their host stars. The companion mass required to eject the stellar envelope is smaller by up to 50% , leading to differences in common-envelope evolution outcomes. The energy deposition in the outer envelope of the star, which is related to the transient luminosity and duration, is up to a factor of ≈7 higher. Common-envelope efficiency values above unity, as defined in the literature, aremore »thus not necessarily unphysical, and result at least partly from an incomplete description of the energy deposition. The revised energy formalism presented here can improve our understanding of stellar merger and common-envelope observations and simulations.« less
    Free, publicly-accessible full text available September 30, 2023
  9. Massive black holes (BHs) at the centres of massive galaxies are ubiquitous. The population of BHs within dwarf galaxies, on the other hand, is evasive. Dwarf galaxies are thought to harbour BHs with proportionally small masses, including intermediate mass BHs, with masses 102
  10. ABSTRACT TIC 470710327, a massive compact hierarchical triple-star system, was recently identified by NASA’s Transiting Exoplanet Survey Satellite. TIC 470710327 is comprised of a compact (1.10 d) circular eclipsing binary, with total mass $\approx 10.9\!-\!13.2\, \rm {M_{\odot }}$, and a more massive $\approx 14\!-\!17\, \rm {M_{\odot }}$ eccentric non-eclipsing tertiary in a 52.04 d orbit. Here, we present a progenitor scenario for TIC 470710327 in which ‘2 + 2’ quadruple dynamics result in Zeipel–Lidov–Kozai oscillations that lead to a contact phase of the more massive binary. In this scenario, the two binary systems should form in a very similar manner, and dynamics trigger the merger of the more massive binary either during late phases of star formation or several Myr after the zero-age main sequence, when the stars begin to expand. Any evidence that the tertiary is a highly magnetized (∼1–10 kG), slowly rotating blue main-sequence star would hint towards a quadruple origin. Finally, our scenario suggests that the population of inclined compact multiple-stellar systems is reduced into coplanar systems, via mergers, late during star formation or early in the main sequence. The elucidation of the origin of TIC 470710327 is crucial in our understanding of multiple massive star formation and evolution.