skip to main content


Title: The Rapid Rise of Next-Generation Natural History
Many ecologists have lamented the demise of natural history and have attributed this decline to a misguided view that natural history is outdated and unscientific. Although there is a perception that the focus in ecology and conservation have shifted away from descriptive natural history research and training toward hypothetico-deductive research, we argue that natural history has entered a new phase that we call “next-generation natural history.” This renaissance of natural history is characterized by technological and statistical advances that aid in collecting detailed observations systematically over broad spatial and temporal extents. The technological advances that have increased exponentially in the last decade include electronic sensors such as camera-traps and acoustic recorders, aircraft- and satellite-based remote sensing, animal-borne biologgers, genetics and genomics methods, and community science programs. Advances in statistics and computation have aided in analyzing a growing quantity of observations to reveal patterns in nature. These robust next-generation natural history datasets have transformed the anecdotal perception of natural history observations into systematically collected observations that collectively constitute the foundation for hypothetico-deductive research and can be leveraged and applied to conservation and management. These advances are encouraging scientists to conduct and embrace detailed descriptions of nature that remain a critically important component of the scientific endeavor. Finally, these next-generation natural history observations are engaging scientists and non-scientists alike with new documentations of the wonders of nature. Thus, we celebrate next-generation natural history for encouraging people to experience nature directly.  more » « less
Award ID(s):
2025755
NSF-PAR ID:
10299679
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantifying movement and demographic events of free‐ranging animals is fundamental to studying their ecology, evolution and conservation. Technological advances have led to an explosion in sensor‐based methods for remotely observing these phenomena. This transition to big data creates new challenges for data management, analysis and collaboration.

    We present the Movebank ecosystem of tools used by thousands of researchers to collect, manage, share, visualize, analyse and archive their animal tracking and other animal‐borne sensor data. Users add sensor data through file uploads or live data streams and further organize and complete quality control within the Movebank system. All data are harmonized to a data model and vocabulary. The public can discover, view and download data for which they have been given access to through the website, the Animal Tracker mobile app or by API. Advanced analysis tools are available through the EnvDATA System, the MoveApps platform and a variety of user‐developed applications. Data owners can share studies with select users or the public, with options for embargos, licenses and formal archiving in a data repository.

    Movebank is used by over 3,100 data owners globally, who manage over 6 billion animal location and sensor measurements across more than 6,500 studies, with thousands of active tags sending over 3 million new data records daily. These data underlie >700 published papers and reports. We present a case study demonstrating the use of Movebank to assess life‐history events and demography, and engage with citizen scientists to identify mortalities and causes of death for a migratory bird.

    A growing number of researchers, government agencies and conservation organizations use Movebank to manage research and conservation projects and to meet legislative requirements. The combination of historic and new data with collaboration tools enables broad comparative analyses and data acquisition and mapping efforts. Movebank offers an integrated system for real‐time monitoring of animals at a global scale and represents a digital museum of animal movement and behaviour. Resources and coordination across countries and organizations are needed to ensure that these data, including those that cannot be made public, remain accessible to future generations.

     
    more » « less
  2. null (Ed.)
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association. 
    more » « less
  3. Abstract

    In the atmosphere,microphysicsrefers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth's atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods.

     
    more » « less
  4. Primary biodiversity data records that are open access and available in a standardised format are essential for conservation planning and research on policy-relevant time-scales. We created a dataset to document all known occurrence data for the Federally Endangered Poweshiek skipperling butterfly [ Oarismapoweshiek (Parker, 1870; Lepidoptera: Hesperiidae)]. The Poweshiek skipperling was a historically common species in prairie systems across the upper Midwest, United States and Manitoba, Canada. Rapid declines have reduced the number of verified extant sites to six. Aggregating and curating Poweshiek skipperling occurrence records documents and preserves all known distributional data, which can be used to address questions related to Poweshiek skipperling conservation, ecology and biogeography. Over 3500 occurrence records were aggregated over a temporal coverage from 1872 to present. Occurrence records were obtained from 37 data providers in the conservation and natural history collection community using both “HumanObservation” and “PreservedSpecimen” as an acceptable basisOfRecord. Data were obtained in different formats and with differing degrees of quality control. During the data aggregation and cleaning process, we transcribed specimen label data, georeferenced occurrences, adopted a controlled vocabulary, removed duplicates and standardised formatting. We examined the dataset for inconsistencies with known Poweshiek skipperling biogeography and phenology and we verified or removed inconsistencies by working with the original data providers. In total, 12 occurrence records were removed because we identified them to be the western congener Oarismagarita (Reakirt, 1866). This resulting dataset enhances the permanency of Poweshiek skipperling occurrence data in a standardised format. This is a validated and comprehensive dataset of occurrence records for the Poweshiek skipperling ( Oarismapoweshiek ) utilising both observation and specimen-based records. Occurrence data are preserved and available for continued research and conservation projects using standardised Darwin Core formatting where possible. Prior to this project, much of these occurrence records were not mobilised and were being stored in individual institutional databases, researcher datasets and personal records. This dataset aggregates presence data from state conservation agencies, natural heritage programmes, natural history collections, citizen scientists, researchers and the U.S. Fish & Wildlife Service. The data include opportunistic observations and collections, research vouchers, observations collected for population monitoring and observations collected using standardised research methodologies. The aggregated occurrence records underwent cleaning efforts that improved data interoperablitity, removed transcription errors and verified or removed uncertain data. This dataset enhances available information on the spatiotemporal distribution of this Federally Endangered species. As part of this aggregation process, we discovered and verified Poweshiek skipperling occurrence records from two previously unknown states, Nebraska and Ohio. 
    more » « less
  5. null (Ed.)
    Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence. 
    more » « less