skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education
Abstract There is a contemporary trend in many major research institutions to de‐emphasize the importance of natural history education in favor of theoretical, laboratory, or simulation‐based research programs. This may take the form of removing biodiversity and field courses from the curriculum and the sometimes subtle maligning of natural history research as a “lesser” branch of science. Additional threats include massive funding cuts to natural history museums and the maintenance of their collections, the extirpation of taxonomists across disciplines, and a critical under‐appreciation of the role that natural history data (and other forms of observational data, including Indigenous knowledge) play in the scientific process. In this paper, we demonstrate that natural history knowledge is integral to any competitive science program through a comprehensive review of the ways in which they continue to shape modern theory and the public perception of science. We do so by reviewing how natural history research has guided the disciplines of ecology, evolution, and conservation and how natural history data are crucial for effective education programs and public policy. We underscore these insights with contemporary case studies, including: how understanding the dynamics of evolutionary radiation relies on natural history data; methods for extracting novel data from museum specimens; insights provided by multi‐decade natural history programs; and how natural history is the most logical venue for creating an informed and scientifically literate society. We conclude with recommendations aimed at students, university faculty, and administrators for integrating and supporting natural history in their mandates. Fundamentally, we are all interested in understanding the natural world, but we can often fall into the habit of abstracting our research away from its natural contexts and complexities. Doing so risks losing sight of entire vistas of new questions and insights in favor of an over‐emphasis on simulated or overly controlled studies.  more » « less
Award ID(s):
2047192
PAR ID:
10471153
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
10
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As technology advances, data-driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research-practice partnership that brings together STEM+C instructors and researchers from three universities and education research and consulting groups. We aim to use high-frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings have improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less
  2. Scholars and public figures have called for improved ethics and social responsibility education in computer science degree programs in order to better address consequential technological issues in society. Indeed, rising public concern about computing technologies arguably represents an existential threat to the credibility of the computing profession itself. Despite these increasing calls, relatively little is known about the ethical development and beliefs of computer science students, especially compared to other science and engineering students. Gaps in scholarly research make it difficult to effectively design and evaluate ethics education interventions in computer science. Therefore, there is a pressing need for additional empirical study regarding the development of ethical attitudes in computer science students. Influenced by the Professional Social Responsibility Development Model, this study explores personal and professional social responsibility attitudes among undergraduate computing students. Using survey results from a sample of 982 students (including 184 computing majors) who graduated from a large engineering institution between 2017 and 2021, we compare social responsibility attitudes cross-sectionally among computer science students, engineering students, other STEM students, and non-STEM students. Study findings indicate computer science students have statistically significantly lower social responsibility attitudes than their peers in other science and engineering disciplines. In light of growing ethical concerns about the computing profession, this study provides evidence about extant challenges in computing education and buttresses calls for more effective development of social responsibility in computing students. We discuss implications for undergraduate computing programs, ethics education, and opportunities for future research. 
    more » « less
  3. Elmer Ottis Wooton (1865–1945) was one of the most important early botanists to work in the Southwestern United States, contributing a great deal of natural history knowledge and botanical research on the flora of New Mexico that shaped many naturalists and scientists for generations. The extensive Wooton legacy includes herbarium collections that he and his famous student Paul Carpenter Standley (1884–1963), prolific botanist and explorer, used for the first Flora of New Mexi co by Wooten and Standley 1915 , along with resources covering botany and range management strategies for the northern Chihuahuan Desert, and an extensive, yet to be digitized, historical archive of correspondence, field notes, vegetation sketches, photographs, and lantern slides, all from his travels and field work in the region. Starting in 1890, the most complete set of Wooton’s herbarium collections were deposited in the NMC herbarium at New Mexico State University (NMSU), and his archives, now stored in a Campus library, have together been underutilized, offline resources. The goals of this ongoing project are to secure, preserve, and promote Wooton’s important historical resources, by fleshing out the botanical history of the region, raising appreciation of herbarium collections within the community, and emphasizing their unique role in facilitating contemporary research aimed at addressing pressing scientific questions such as vegetation responses to global climate change. Students and the general public involved in this project are engaged through hands-on activities including cataloging, databasing and digitization of nearly 10,000 herbarium specimens and Wooton’s archives. These outputs, combined with contemporary data collection and computational biology techniques from an ecological perspective, are being used to document vegetation changes in iconic, climate-sensitive, high-elevation mountainous ecosystems present in southwestern New Mexico. In a later phase of the project, a variety of public audiences will participate through interactive online story maps and citizen science programs such as iNaturalist , Notes from Nature , and BioBlitz . Images of herbarium specimens will be shared via an online database and other relevant biodiversity portals ( Symbiota , iDigBio , JStor ) Community members reached through this project will be better-informed citizens, who may go on to become new stewards of natural history collections, with the potential to influence policies safeguarding the future of our planet’s biodiversity. More locally, the project will support the management of Organ Mountains Desert Peaks National Monument, which was established in 2014 to protect the area's human and environmental resources, and for which knowledge and data are currently limited. 
    more » « less
  4. null (Ed.)
    As technology advances, data driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research practice partnership that brings together STEM+C instructors and researchers from three universities and an education research and consulting group. We aim to use high frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings has improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less
  5. null (Ed.)
    As technology advances, data driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research practice partnership that brings together STEM+C instructors and researchers from three universities and an education research and consulting group. We aim to use high frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings has improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less