- Award ID(s):
- 2021795
- NSF-PAR ID:
- 10299708
- Date Published:
- Journal Name:
- Insects
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2075-4450
- Page Range / eLocation ID:
- 626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.more » « less
-
Phenotypes are used for a multitude of purposes such as defining species, reconstructing phylogenies, diagnosing diseases or improving crop and animal productivity, but most of this phenotypic data is published in free-text narratives that are not computable. This means that the complex relationship between the genome, the environment and phenotypes is largely inaccessible to analysis and important questions related to the evolution of organisms, their diseases or their response to climate change cannot be fully addressed. It takes great effort to manually convert free-text narratives to a computable format before they can be used in large-scale analyses. We argue that this manual curation approach is not a sustainable solution to produce computable phenotypic data for three reasons: 1) it does not scale to all of biodiversity; 2) it does not stop the publication of free-text phenotypes that will continue to need manual curation in the future and, most importantly, 3) It does not solve the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other). Our empirical studies have shown that inter-curator variation is as high as 40% even within a single project. With this level of variation, it is difficult to imagine that data integrated from multiple curation projects can be of high quality. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardised vocabularies (ontologies). We argue that the authors describing phenotypes are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project’s semantics and ontology. This will speed up ontology development and improve the semantic clarity of phenotype descriptions from the moment of publication. A proof of concept project on this idea was funded by NSF ABI in July 2017. We seek readers input or critique of the proposed approaches to help achieve community-based computable phenotype data production in the near future. Results from this project will be accessible through https://biosemantics.github.io/author-driven-production.more » « less
-
Koepfli, Klaus-Peter (Ed.)Abstract Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison–cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.more » « less
-
Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research. However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1, Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly lacking gene annotations. Here, we describe a reference-guided effort to scaffold those contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of non-gap sequence anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes unambiguously localized to chromosomes, including over 2,000 genes that were previously unplaced. We also discovered more than 5,700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1 photoperiod response locus.more » « less
-
Abstract Biotic and abiotic factors at local to landscape scales influence insect pest and disease dynamics in agricultural systems. However, relative to studies focused on the importance of these drivers of crop plant damage in rural agricultural systems, few studies investigate plant damage from herbivore insects and plant diseases in urban agroecosystems, and consequently, most urban farmers lack knowledge on crop protection tactics. Here we use three common crop species within urban agroecosystems (community gardens) distributed across an urban landscape as a model system to ask how local, landscape, and microclimate factors relate to herbivore and disease plant damage. We hypothesized that plant damage would be lower in gardens with greater local vegetation complexity, landscape‐scale complexity, and less variable temperatures, but that the importance of factors is species‐ and damage‐specific. By measuring
Brassica , cucurbit, and tomato insect pest and disease damage across the growing season, we confirmed that the importance of factors varies with crop species and by damage type. Both local complexity factors (e.g., number of trees and shrubs) and landscape complexity (percent natural cover in the landscape) relate to lower incidence of herbivore and disease damage on some crops, supporting our prediction that habitat heterogeneity at both local and landscape scales lowers plant damage. Greater temperature variability related to higher disease damage on tomatoes linking microclimate factors to disease prevalence. Yet, local complexity factors also related to higher incidence of plant damage for other crop species, indicating variable species‐level impacts of local management factors on plant damage. By measuring the abundance of fungus‐feeding lady beetles (Psyllobora ) on cucurbits, we confirmed a strong association between natural enemies and powdery mildew. We provide a case study on how changes in local to landscape‐scale factors relate to plant damage in urban agroecosystems and suggest how urban farmers and gardeners can apply this ecological knowledge to improve sustainable urban food production.