skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient Overturning Compensation between Atlantic and Indo-Pacific Basins
Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate.  more » « less
Award ID(s):
1643445
PAR ID:
10299716
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
50
Issue:
8
ISSN:
0022-3670
Page Range / eLocation ID:
2151 to 2172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate. 
    more » « less
  2. We investigate the role of Southern Ocean topography and wind stress in the deep and abyssal ocean overturning and water mass composition using a suite of idealized global ocean circulation models. Specifically, we address how the presence of a meridional ridge in the vicinity of Drake Passage and the formation of an associated Southern Ocean gyre influence the water mass composition of the abyssal cell. Our experiments are carried out using a numerical representation of the global ocean circulation in an idealized two-basin geometry under varying wind stress and Drake Passage ridge height. In the presence of a low Drake Passage ridge, the overall strength of the meridional overturning circulation is primarily influenced by wind stress, with a topographically induced weakening of the middepth cell and concurrent strengthening of the abyssal cell occurring only after ridge height passes 2500 m. Passive tracer experiments show that a strengthening middepth cell leads to increased abyssal ventilation by North Atlantic water masses, as more North Atlantic Deep Water (NADW) enters the Southern Ocean and then spreads into the Indo-Pacific. We repeat our tracer experiments without restoring in the high-latitude Southern Ocean in order to identify the origin of water masses that circulate through the Southern Ocean before sinking into the abyss as Antarctic Bottom Water. Our results from these “exchange” tracer experiments show that an increasing ridge height in Drake Passage and the concurrent gyre spinup lead to substantially decreased NADW-origin waters in the abyssal ocean, as more surface waters from north of the Antarctic Circumpolar Current (ACC) are transferred into the Antarctic Bottom Water formation region. Significance StatementThe objective of this study is to investigate how topographic features in the Southern Ocean can affect the overall structure of Earth’s large-scale ocean circulation and the distribution of water masses in the abyssal ocean. We focus on the Southern Ocean because the region is of central importance for exchange between the Atlantic and Indo-Pacific Ocean basins and for CO2and heat uptake into the abyssal ocean. Our results indicate that Southern Ocean topography plays a major role in the overall circulation by 1) controlling the direct transfer of abyssal waters from the Atlantic to the Indo-Pacific via its influence on the Atlantic meridional overturning circulation and 2) controlling the coupling between the abyssal ocean and surface waters north of the Antarctic Circumpolar Current via the Southern Ocean gyre. 
    more » « less
  3. Abstract In contrast to the modern‐day climate, North Pacific deep water formation and a Pacific meridional overturning circulation (PMOC) may have been active during past climate conditions, in particular during the Pliocene epoch (some 3–5 million years ago). Here, we use a climate model simulation with a robust PMOC cell to investigate the pathways of the North Pacific deep water from subduction to upwelling, as revealed by Lagrangian particle trajectories. We find that similar to the present‐day Atlantic Meridional Overturning Circulation (AMOC), most subducted North Pacific deep water upwells in the Southern Ocean. However, roughly 15% upwells in the tropical Indo‐Pacific Oceans instead—a key feature distinguishing the PMOC from the AMOC. The connection to the Indian Ocean is relatively fast, at about 250 years. The connection to the tropical Pacific is slower (∼800 years) as water first travels to the subtropical South Pacific then gradually upwells through the thermocline. 
    more » « less
  4. Abstract Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change. 
    more » « less
  5. null (Ed.)
    Using velocities from a state estimate, Lagrangian analysis maps the global routes of North Atlantic Deep Water (NADW) exiting the Atlantic and reentering the upper branch of the Atlantic Meridional Overturning Circulation (AMOC). Virtual particle trajectories followed for 8100 years highlight an upper route (32%) and a lower route (68%). The latter samples σ 2 > 37.07 and is further divided into subpolar (20%) and abyssal cells (48%). Particles in the abyssal cell detour into the abyssal North Pacific before upwelling in the Southern Ocean. NADW preferentially upwells north of 33°S (67%). Total diapycnal transformations are largest in the lower route but of comparable magnitudes in the upper route, challenging its previous characterization as “adiabatic.” Typical transit times are 300, 700, and 3600 years for the upper route, subpolar, and abyssal cells, respectively. The AMOC imports salinity into the Atlantic, indicating its potential instability to high-latitude freshwater perturbations. 
    more » « less