skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating observed cloud transitions in the northeast Pacific during CSET
Abstract The goal of this study is to challenge a large eddy simulation model with a range of observations from a modern field campaign and to develop case studies useful to other modelers. The 2015 Cloud System Evolution in the Trades (CSET) field campaign provided a wealth of in situ and remote sensing observations of subtropical cloud transitions in the summertime Northeast Pacific. Two Lagrangian case studies based on these observations are used to validate the thermodynamic, radiative and microphysical properties of large eddy simulations (LES) of the stratocumulus to cumulus transition. The two cases contrast a relatively fast cloud transition in a clean, initially well-mixed boundary layer vs. a slower transition in an initially decoupled boundary layer with higher aerosol concentrations and stronger mean subsidence. For each case, simulations of two neighboring trajectories sample mesoscale variability and the coherence of the transition in adjacent air masses. In both cases, LES broadly reproduce satellite and aircraft observations of the transition. Simulations of the first case match observations more closely than for the second case, where simulations underestimate cloud cover early in the simulations and overestimate cloud top height later. For the first case, simulated cloud fraction and liquid water path increase if a larger cloud droplet number concentration is prescribed. In the second case, precipitation onset and inversion cloud breakup occurs earlier when the LES domain is chosen large enough to support strong mesoscale organization.  more » « less
Award ID(s):
1938108
PAR ID:
10299814
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweak the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence. 
    more » « less
  2. Abstract To enhance our understanding of cloud simulations over land, this study provides the first assessment of coupling between cloud and land surface in the Large‐Eddy Simulation (LES) Atmospheric Radiation Measurement Symbiotic Simulation and Observation (LASSO) activity for the shallow convection scenario. The analysis of observation data reveals a diurnal cycle of cloud‐land coupling, which co‐varies with surface fluxes. However, coupled (or decoupled) cumulus clouds are inadequately simulated, manifesting as a too‐high (or low) occurrence frequency during the afternoon. This discrepancy is mirrored by the overestimated cloud liquid water path and cloud‐top height. These overestimations are linked to the overpredicted boundary‐layer development and the easier trigger of shallow convection misrepresented in LES runs. Our study underscores the need to improve the representations of boundary‐layer processes and cloud‐land interactions within LES to better simulate shallow clouds in the future. 
    more » « less
  3. Idealized large-eddy simulations of shallow convection often utilize horizontally periodic computational domains. The development of precipitation in shallow cumulus convection changes the spatial structure of convection and creates large-scale organization. However, the limited periodic domain constrains the horizontal variability of the atmospheric boundary layer. Small computational domains cannot capture the mesoscale boundary layer organization and artificially constrain the horizontal convection structure. The effects of the horizontal domain size on large-eddy simulations of shallow precipitating cumulus convection are investigated using four computational domains, ranging from 40×40km2 to 320×320km2 and fine grid resolution (40 m). The horizontal variability of the boundary layer is captured in computational domains of 160×160km2. Small LES domains (≤40 km) cannot reproduce the mesoscale flow features, which are about 100km long, but the boundary layer mean profiles are similar to those of the larger domains. Turbulent fluxes, temperature and moisture variances, and horizontal length scales are converged with respect to domain size for domains equal to or larger than 160×160km2. Vertical velocity flow statistics, such as variance and spectra, are essentially identical in all domains and show minor dependence on domain size. Characteristic horizontal length scales (i.e., those relating to the mesoscale organization) of horizontal wind components, temperature and moisture reach an equilibrium after about hour 30. 
    more » « less
  4. Abstract This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical principles of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column (SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behavior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameterizations most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES. Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during wind-driven deepening of the mixed layer and 2) under strong diurnal forcing. 
    more » « less
  5. Abstract Mesoscale‐to‐microscale coupling is an important tool for conducting turbulence‐resolving multiscale simulations of realistic atmospheric flows, which are crucial for applications ranging from wind energy to wildfire spread studies. Different techniques are used to facilitate the development of realistic turbulence in the large‐eddy simulation (LES) domain while minimizing computational cost. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method using momentum perturbation (SCPM‐M) to accelerate turbulence generation in boundary‐coupled LES simulations using the Weather Research and Forecasting model. We simulate a convective boundary layer (CBL) to characterize the production and dissipation of turbulent kinetic energy (TKE) and the variation of TKE budget terms. Furthermore, we evaluate the impact of applying momentum perturbations of three magnitudes below, up to, and above the CBL on the TKE budget terms. Momentum perturbations greatly reduce the fetch associated with turbulence generation. When applied to half the vertical extent of the boundary layer, momentum perturbations produce an adequate amount of turbulence. However, when applied above the CBL, additional structures are generated at the top of the CBL, near the inversion layer. The magnitudes of the TKE budgets produced by SCPM‐M when applied at varying heights and with different perturbation amplitudes are always higher near the surface and inversion layer than those produced by No‐SCPM, as are their contributions to the TKE. This study provides a better understanding of how SCPM‐M reduces computational costs and how different budget terms contribute to TKE in a boundary‐coupled LES simulation. 
    more » « less