skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First Assessment of Cloud‐Land Coupling in LASSO Large‐Eddy Simulations
Abstract To enhance our understanding of cloud simulations over land, this study provides the first assessment of coupling between cloud and land surface in the Large‐Eddy Simulation (LES) Atmospheric Radiation Measurement Symbiotic Simulation and Observation (LASSO) activity for the shallow convection scenario. The analysis of observation data reveals a diurnal cycle of cloud‐land coupling, which co‐varies with surface fluxes. However, coupled (or decoupled) cumulus clouds are inadequately simulated, manifesting as a too‐high (or low) occurrence frequency during the afternoon. This discrepancy is mirrored by the overestimated cloud liquid water path and cloud‐top height. These overestimations are linked to the overpredicted boundary‐layer development and the easier trigger of shallow convection misrepresented in LES runs. Our study underscores the need to improve the representations of boundary‐layer processes and cloud‐land interactions within LES to better simulate shallow clouds in the future.  more » « less
Award ID(s):
2126098
PAR ID:
10532892
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Due to surface heating, the morning boundary layer transits from stable to neutral or convective conditions, exerting critical influences on low tropospheric thermodynamics. Low clouds closely interact with the boundary layer development, yet their interactions bear considerable uncertainties. Our study reveals that cloud‐surface coupling alters the morning transition from stable to unstable boundary layer and thus notably affects the diurnal variation of the boundary layer. Specifically, due to the reduction in surface fluxes, decoupled clouds can delay the process of eroding nocturnal inversion by 0.8‐hr and even prevent the transition of the boundary layer from happening for 12% of decoupled cases, keeping the boundary layer in a stable state during the noontime. On the other hand, when clouds are coupled with the surface, cloud‐top radiative cooling can directly cool the upper boundary layer to facilitate sub‐cloud convection, leading to an unstable boundary layer in the earlier morning. 
    more » « less
  2. Abstract Understanding interactions between low clouds and land surface fluxes is critical to comprehending Earth's energy balance, yet their relationships remain elusive, with discrepancies between observations and modeling. Leveraging long‐term field observations over the Southern Great Plains, this investigation revealed that cloud‐land interactions are closely connected to cloud‐land coupling regimes. Observational evidence supports a dual‐mode interaction: coupled stratiform clouds predominate in low sensible heat scenarios, while coupled cumulus clouds dominate in high sensible heat scenarios. Reanalysis data sets, MERRA‐2 and ERA‐5, obscure this dichotomy owing to a shortfall in representing boundary layer clouds, especially in capturing the initiation of coupled cumulus in high sensible heat scenarios. ERA‐5 demonstrates a relatively closer alignment with observational data, particularly in capturing relationships between cloud frequency and latent heat, markedly outperforming MERRA‐2. Our study underscores the necessity of distinguishing different cloud coupling regimes, essential to the understanding of their interactions for advancing land‐atmosphere interactions. 
    more » « less
  3. Abstract We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation. 
    more » « less
  4. Abstract Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweak the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence. 
    more » « less
  5. Abstract. The states of coupling between clouds andsurface or boundary layer have been investigated much more extensively formarine stratocumulus clouds than for continental low clouds, partly due tomore complex thermodynamic structures over land. A manifestation is a lackof robust remote sensing methods to identify coupled and decoupled cloudsover land. Following the idea for determining cloud coupling over the ocean,we have generalized the concept of coupling and decoupling to low cloudsover land, based on potential temperature profiles. Furthermore, by usingample measurements from lidar and a suite of surface meteorologicalinstruments at the U.S. Department of Energy's Atmospheric RadiationMeasurement Program's Southern Great Plains site from 1998 to 2019, we havedeveloped a method to simultaneously retrieve the planetary boundary layer(PBL) height (PBLH) and coupled states under cloudy conditions during thedaytime. The new lidar-based method relies on the PBLH, the liftedcondensation level, and the cloud base to diagnose the cloud coupling. Thecoupled states derived from this method are highly consistent with thosederived from radiosondes. Retrieving the PBLH under cloudy conditions, whichhas been a persistent problem in lidar remote sensing, is resolved in thisstudy. Our method can lead to high-quality retrievals of the PBLH undercloudy conditions and the determination of cloud coupling states. With thenew method, we find that coupled clouds are sensitive to changes in the PBLwith a strong diurnal cycle, whereas decoupled clouds and the PBL are weaklyrelated. Since coupled and decoupled clouds have distinct features, our newmethod offers an advanced tool to separately investigate them in climatesystems. 
    more » « less