skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superconductivity in La2Ni2In
We report here the properties of single crystals of La 2 Ni 2 In . Electrical resistivity and specific heat measurements concur with the results of density functional theory calculations, finding that La 2 Ni 2 In is a weakly correlated metal, where the Ni magnetism is almost completely quenched, leaving only a weak Stoner enhancement of the density of states. Superconductivity is observed at temperatures below 0.9 K. A detailed analysis of the field and temperature dependencies of the resistivity, magnetic susceptibility, and specific heat at the lowest temperatures reveals that La 2 Ni 2 In is a dirty type-II superconductor with likely s -wave gap symmetry. Nanoclusters of ferromagnetic inclusions significantly affect the subgap states resulting in a nonexponential temperature dependence of the specific heat C ( T ) at T ≪ T c .  more » « less
Award ID(s):
1807451
PAR ID:
10299922
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical review
Volume:
102
ISSN:
2470-0010
Page Range / eLocation ID:
165125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phase transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures. 
    more » « less
  2. Abstract Magnetic and electronic properties of quantum materials heavily rely on the crystal structure even in the same chemical compositions. In this study, it is demonstrated that a layered tetragonal EuCd 2 Sb 2 structure can be obtained by treating bulk trigonal EuCd 2 Sb 2 under high pressure (6 GPa) and high temperature (600 °C). Magnetization measurements of the newly formed layered tetragonal EuCd 2 Sb 2 confirm an antiferromagnetic ordering with Neel temperature ( T N ) around 16 K, which is significantly higher than that ( T N ≈ 7 K) of trigonal EuCd 2 Sb 2 , consistent with heat capacity measurements. Moreover, bad metal behavior is observed in the temperature dependence of the electrical resistivity and the resistivity shows a dramatic increase around the Neel temperature. Electronic structure calculations with local density approximation dynamic mean–field theory (LDA+DMFT) show that this material is strongly correlated with well‐formed large magnetic moments, due to Hund's coupling, which is known to dramatically suppress the Kondo scale. 
    more » « less
  3. Abstract Motivated by the recent observation of superconductivity withTc ~ 80 K in pressurized La3Ni2O71, we explore the structural and electronic properties ofA3Ni2O7bilayer nickelates (A = La-Lu, Y, Sc) as a function of pressure (0–150 GPa) from first principles including a Coulomb repulsion term. At ~ 20 GPa, we observe an orthorhombic-to-tetragonal transition in La3Ni2O7at variance with x-ray diffraction data, which points to so-far unresolved complexities at the onset of superconductivity, e.g., charge doping by variations in the oxygen stoichiometry. We compile a structural phase diagram that establishes chemical and external pressure as distinct and counteracting control parameters. We find unexpected correlations betweenTcand thein-planeNi-O-Ni bond angles for La3Ni2O7. Moreover, two structural phases with significantc+octahedral rotations and in-plane bond disproportionations are uncovered forA = Nd-Lu, Y, Sc that exhibit a pressure-driven electronic reconstruction in the Niegmanifold. By disentangling the involvement of basal versus apical oxygen states at the Fermi surface, we identify Tb3Ni2O7as an interesting candidate for superconductivity at ambient pressure. These results suggest a profound tunability of the structural and electronic phases in this novel materials class and are key for a fundamental understanding of the superconductivity mechanism. 
    more » « less
  4. Abstract Electrical resistivity experiments were conducted on three alloys in the iron-rich side of the Fe-Ni(-S) system (Fe-5 wt% Ni, Fe-10 wt% Ni, Fe-10 wt% Ni-5 wt% S) at 4.5 and 8 GPa and up to 1900 K using the multi-anvil apparatus and the 4-electrode technique. For all samples, increasing temperature increases resistivity. At a specified temperature, Fe-Ni(-S) alloys are more resistive than Fe by a factor of about 3. Fe-Ni alloys containing 5 and 10 wt% Ni present comparable electrical resistivity values. The resistivity of Fe-Ni(-S) alloys is comparable to the one of Fe = 5 wt% S at 4.5 GPa and is about three times higher than the resistivity of Fe = 5 wt% S at 8 GPa, due to a different pressure dependence of electrical resistivity between Fe-Ni and Fe-S alloys. Based on these electrical results and experimentally determined thermal conductivity values from the literature, lower and upper bounds of thermal conductivity were calculated. For all Ni-bearing alloys, thermal conductivity estimates range between ~12 and 20 W/(m⋅K) over the considered pressure and temperature ranges. Adiabatic heat fluxes were computed for both Ganymede's core and the Lunar core, and heat flux values suggest a significant dependence to both core composition and the adiabatic temperature. Comparison with previous thermochemical models of the cores of Ganymede and the Moon suggests that some studies may have overestimated the thermal conductivity and hence, the heat flux along the adiabat in these planetary cores. 
    more » « less
  5. La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 . 
    more » « less